998 resultados para IRON COMPOUNDS
Resumo:
The purpose of the workshop "Do Peroxisome Proliferating Compounds Pose a Hepatocarcinogenic Hazard to Humans?" was to provide a review of the current state of the science on the relationship between peroxisome proliferation and hepatocarcinogenesis. There has been much debate regarding the mechanism by which peroxisome proliferators may induce liver tumors in rats and mice and whether these events occur in humans. A primary goal of the workshop was to determine where consensus might be reached regarding the interpretation of these data relative to the assessment of potential human risks. A core set of biochemical and cellular events has been identified in the rodent strains that are susceptible to the hepatocarcinogenic effects of peroxisome proliferators, including peroxisome proliferation, increases in fatty acyl-CoA oxidase levels, microsomal fatty acid oxidation, excess production of hydrogen peroxide, increases in rates of cell proliferation, and expression and activation of the alpha subtype of the peroxisome proliferator-activated receptor (PPAR-alpha). Such effects have not been identified clinically in liver biopsies from humans exposed to peroxisome proliferators or in in vitro studies with human hepatocytes, although PPAR-alpha is expressed at a very low level in human liver. Consensus was reached regarding the significant intermediary roles of cell proliferation and PPAR-alpha receptor expression and activation in tumor formation. Information considered necessary for characterizing a compound as a peroxisome proliferating hepatocarcinogen include hepatomegaly, enhanced cell proliferation, and an increase in hepatic acyl-CoA oxidase and/or palmitoyl-CoA oxidation levels. Given the lack of genotoxic potential of most peroxisome proliferating agents, and since humans appear likely to be refractive or insensitive to the tumorigenic response, risk assessments based on tumor data may not be appropriate. However, nontumor data on intermediate endpoints would provide appropriate toxicological endpoints to determine a point of departure such as the LED10 or NOAEL which would be the basis for a margin-of-exposure (MOE) risk assessment approach. Pertinent factors to be considered in the MOE evaluation would include the slope of the dose-response curve at the point of departure, the background exposure levels, and variability in the human response.
The biological in vitro effect and selectivity of aromatic dicationic compounds on Trypanosoma cruzi
Resumo:
Trypanosoma cruzi is a parasite that causes Chagas disease, which affects millions of individuals in endemic areas of Latin America. One hundred years after the discovery of Chagas disease, it is still considered a neglected illness because the available drugs are unsatisfactory. Aromatic compounds represent an important class of DNA minor groove-binding ligands that exhibit potent antimicrobial activity. This study focused on the in vitro activity of 10 aromatic dicationic compounds against bloodstream trypomastigotes and intracellular forms of T. cruzi. Our data demonstrated that these compounds display trypanocidal effects against both forms of the parasite and that seven out of the 10 compounds presented higher anti-parasitic activity against intracellular parasites compared with the bloodstream forms. Additional assays to determine the potential toxicity to mammalian cells showed that the majority of the dicationic compounds did not considerably decrease cellular viability. Fluorescent microscopy analysis demonstrated that although all compounds were localised to a greater extent within the kinetoplast than the nucleus, no correlation could be found between compound activity and kDNA accumulation. The present results stimulate further investigations of this class of compounds for the rational design of new chemotherapeutic agents for Chagas disease.
Resumo:
High postprandial levels of TAG may further induce endothelial dysfunction and inflammation in subjects with high fasting levels of TAG, an effect that seems to be related to oxidative stress. The present study investigated whether minor compounds of olive oil with antioxidant activity decrease postprandial levels of soluble isoforms of intercellular adhesion molecule 1 (sICAM-1) and vascular cell adhesion molecule 1 (sVCAM-1), as surrogate markers of vascular inflammation, after a high-fat meal. A randomized crossover and blind trial on fourteen healthy and fourteen hypertriacylglycerolaemic subjects was performed. The study involved a 1-week adaptation lead-in period on a National Cholesterol Education Program Step I diet supplemented with extra-virgin olive oil (EVOO) containing 1125 mg polyphenols/kg and 350 mg tocopherols/kg, or refined olive oil (ROO) with no polyphenols or tocopherols. After a 12 h fast, the participants ate a high-fat meal enriched in EVOO or ROO (50 g/m2 body surface area), which on average provided 3700 kJ energy with a macronutrient profile of 72% fat, 22% carbohydrate and 6% protein. Blood samples drawn hourly over the following 8 h demonstrated a similar postprandial TAG response for both EVOO and ROO meals. However, in both healthy and hypertriacylglycerolaemic subjects the net incremental area under the curve for sICAM-1 and sVCAM-1 were significantly lower after the EVOO meal. In conclusion,the consumption of EVOO with a high content of minor antioxidant compounds may have postprandial anti-inflammatory protective effects.
Resumo:
Plant metabolic engineering has recently enabled the synthesis of a range of polyhydroxyalkanoates as well as a protein-based polymer. These novel compounds can be harvested from plants as a renewable source of environmentally friendly polymers or can be used to change the physical properties of plant products, such as fibres.
Resumo:
Adjuvants play an important role in vaccine formulations by increasing their immunogenicity. In this study, the phenolic compound-rich J fraction (JFR) of a Brazilian green propolis methanolic extract stimulated cellular and humoral immune responses when co-administered with an inactivated vaccine against swine herpesvirus type 1 (SuHV-1). When compared to control vaccines that used aluminium hydroxide as an adjuvant, the use of 10 mg/dose of JFR significantly increased (p < 0.05) neutralizing antibody titres against SuHV-1, as well as the percentage of protected animals following SuHV-1 challenge (p < 0.01). Furthermore, addition of phenolic compounds potentiated the performance of the control vaccine, leading to increased cellular and humoral immune responses and enhanced protection of animals after SuHV-1 challenge (p < 0.05). Prenylated compounds such as Artepillin C that are found in large quantities in JFR are likely to be the substances that are responsible for the adjuvant activity.
Resumo:
A straightforward route is proposed for the multi-gram scale synthesis of heterobifunctional poly(ethylene glycol) (PEG) oligomers containing combination of triethyloxysilane extremity for surface modification of metal oxides and amino or azido active end groups for further functionalization. The suitability of these PEG derivatives to be conjugated to nanomaterials was shown by pegylation of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles (NPs), followed by functionalization with small peptide ligands for biomedical applications.
Resumo:
Perioperative anaemia, with iron deficiency being its leading cause, is a frequent condition among surgical patients, and has been linked to increased postoperative morbidity and mortality, and decreased quality of life. Postoperative anaemia is even more frequent and is mainly caused by perioperative blood loss, aggravated by inflammation-induced blunting of erythropoiesis. Allogenic transfusion is commonly used for treating acute perioperative anaemia, but it also increases the rate of morbidity and mortality in surgical and critically ill patients. Thus, overall concerns about adverse effects of both preoperative anaemia and allogeneic transfusion have prompted the review of transfusion practice and the search for safer and more biologically rational treatment options. In this paper, the role of intravenous iron therapy (mostly with iron sucrose and ferric carboxymaltose), as a safe and efficacious tool for treating anaemia and reducing transfusion requirements in surgical patients, as well as in other medical areas, has been reviewed. From the analysis of published data and despite the lack of high quality evidence in some areas, it seems fair to conclude that perioperative intravenous iron administration, with or without erythropoiesis stimulating agents, is safe, results in lower transfusion requirements and hastens recovery from postoperative anaemia. In addition, some studies have reported decreased rates of postoperative infection and mortality, and shorter length of hospital stay in surgical patients receiving intravenous iron.
Resumo:
Automotive painting cabins are cleaned with several solvents, being great part of them mixtures of volatile organic compounds (VOCs), where the three xylene isomers are the most important constituents. To evaluate the work-related exposition of the cleaners that use these mixtures of solvents, xylenes have been determined in the working ambient air as well as its metabolite, o-m-p-methyl hippuric acid, has been analysed in urine to establish the dermal and respiratory exposition. This evaluation has been done in order to assess the occupational exposure to VOCs and to know the working conditions of the cleaners, but also to evaluate the effectiveness of personal protective equipment (PPE), the engineering control and the work practices.The xylenes have been chosen as indicators of exposition because they are the main components in the cleaning solvents used, with a level of concentration between 50% and 85%.The Xylenes have an occupational exposure limit (8 h TWA) of 50 ppm (221 mg/m3) and a short-term exposure limit (STEL) of 100 ppm (442 mg/m3). On the other hand, the biological exposure index (BEI) for xylenes is the sum of the total methyl hippuric acids in urine at the end of the work-shift, being the value 1500 mg/g creatinine.
Resumo:
Fine particulate matter from traffic increases mortality and morbidity. An important source of traffic particles is brake wear. American studies reported cars to emit break wear particles at a rate of about 11mg/km to 20mg/km of driven distance. A German study estimated that break wear contributes about 12.5% to 21% of the total traffic particle emissions. The goal of this study was to build a system that allows the study of brake wear particle emissions during different braking behaviours of different car and brake types. The particles should be characterize in terms of size, number, metal, and elemental and organic carbon composition. In addition, the influence of different deceleration schemes on the particle composition and size distribution should be studied. Finally, this system should allow exposing human cell cultures to these particles. An exposure-box (0.25 cubic-m volume) was built that can be mounted around a car's braking system. This allows exposing cells to fresh brake wear particles. Concentrations of particle numbers, mass and surface, metals, and carbon compounds were quantified. Tests were conducted with A549 lung epithelial cells. Five different cars and two typical braking behaviours (full stop and normal deceleration) were tested. Particle number and size distribution was analysed for the first six minutes. In this time, two braking events occurred. Full stop produced significantly higher particle concentrations than normal deceleration (average of 23'000 vs. 10'400 #/cm3, p= 0.016). The particle number distribution was bi-modal with one peak at 60 to 100 nm (depending on the tested car and braking behaviour) and a second peak at 200 to 400 nm. Metal concentrations varied depending on the tested car type. Iron (range of 163 to 15'600 μg/m3) and Manganese (range of 0.9 to 135 μg/m3) were present in all samples, while Copper was absent in some samples (<6 to 1220 μg/m3). The overall "fleet" metal ratio was Fe:Cu:Mn = 128:14:1. Temperature and humidity varied little. A549-cells were successfully exposed in the various experimental settings and retained their viability. Culture supernatant was stored and cell culture samples were fixated to test for inflammatory response. Analysis of these samples is ongoing. The established system allowed testing brake wear particle emissions from real-world cars. The large variability of chemical composition and emitted amounts of brake wear particles between car models seems to be related to differences between brake pad compositions of different producers. Initial results suggest that the conditions inside the exposure box allow exposing human lung epithelial cells to freshly produced brake wear particles.
Resumo:
A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. 'Ironomics' certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism.
Resumo:
To cope with oxidative stress, Candida albicans possesses several enzymes involved in a number of biological processes, including superoxide dismutases (Sods) and glutaredoxins (Grxs). The resistance of C. albicans to reactive oxygen species is thought to act as a virulence factor. Genes such as SOD1 and GRX2, which encode for a Sod and Grx, respectively, in C. albicans are widely recognised to be important for pathogenesis. We generated a double mutant, Δgrx2/sod1, for both genes. This strain is very defective in hyphae formation and is susceptible to killing by neutrophils. When exposed to two compounds that generate reactive oxygen species, the double null mutant was susceptible to menadione and resistant to diamide. The reintegration of the SOD1 gene in the null mutant led to recovery in resistance to menadione, whereas reintegration of the GRX2 gene made the null mutant sensitive to diamide. Despite having two different roles in the responses to oxidative stress generated by chemical compounds, GRX2 and SOD1 are important for C. albicans pathogenesis because the double mutant Δgrx2/sod1 was very susceptible to neutrophil killing and was defective in hyphae formation in addition to having a lower virulence in an animal model of systemic infection.
Resumo:
The Mantoverde iron oxide copper-gold (IOCC) district, northern Chile, is known for its Cu production from supergene ores. Recently, exploration outlined an additional hypogene ore resource of 440 Mt with 0.56 percent Cu, and 0.12 g/t An. The hypogene sulfide mineralization occurs mainly as chalcopyrite and pyrite, typically in specularite or magnetite-cemented breccias and associated stockworks. The host rocks underwent variably intense K feldspar alteration, chloritization, sericitization, silicification, and/or carbonatization. A district scale Na(-Ca) alteration is absent. The IOCC mineralization in the district shows a strong tectonic control by northwest- to north-northwest-trending brittle structures. Large Cu sulfide-rich veins or Cu sulfide-cemented breccias are absent. Therefore, head grades of 4 percent Cu are an exception. There is a positive correlation between Cu and An grades. Gold is probably contained mostly in chalcopyrite and pyrite. Elevated concentrations of light rare-earth elements (LREE) occur locally but are attributed to redistribution of LREE within the deposits rather than to derivation from external sources. The Cu-Au ores in the Mantoverde district are low in and have relatively low contents in heavy metals that are potentially hazardous to the environment, such as As (avg 14 ppm), Hg (<5 ppm), or Cd (<0.2 ppm). The sulfur isotope ratios of chalcopyrite from the IOCC deposits lie between -5.6 and 8.9 per mil delta(34)S(VCDT). They show systematic variations within the district, which are interpreted to reflect relative distance to inferred fluid conduits and the level of deposition within the hydrothermal system. Most initial (87)Sr/(86)Sr values of altered volcanic rocks and hydrothermal calcite from the Mantoverde district are between 0.7031 and 0.7060 and are similar to those of the igneous rocks of the region. Lead isotope ratios of chalcopyrite are consistent with Pb (and by inference Cu) derived from Early Cretaceous magmatism. The sulfur, strontium, and lead isotope data of chalcopyrite, calcite gangue, or altered host rocks, respectively, are compatible with a genetic model that involves cooling of metal and sulfur-bearing magmatic-hydrothermal fluids that mix with meteoric waters or seawater at relatively shallow crustal levels. An additional exotic sulfur input is likely, though not required, for the copper mineralization. Apart from the IOCC. deposits, there are a number of smaller magnetite(-apatite) bodies in the district. These are geologically similar to the Cu-Au-bearing magnetite bodies, but are related to splays of the north-south-trending Atacama fault zone and differ in alteration and texture.
Resumo:
Purpose: Iron overload (IO) has been associated with increased cardiovascular risk (CVR) and metabolic syndrome (MS) in the general population; both elevated CVR and MS are frequent in HIV- patients. Our aim was to analyze the prevalence of IO in a cohort of asymptomatic patients with HIV infection, and related factors. Methods: Cross-sectional study of a cohort of HIV outpatients in regular follow-up. Demographic, epidemiological, clinical, analytical and therapeutic data were collected. Patients completed a questionnaire about CVR factors and 10-year CV disease risk estimation (Framingham score), underwent a physical exam, and a fasting blood analysis. IO was defined as a plasma ferritin level higher than 200 m/L in women and 300 m/L in men. Results: 571 patients (446 men, 125 women), with a mean age of 43.2 years, sexual transmission of HIV in 68.5%, median CD4 count 474 cell/μL (IQR: 308-666), and 36.3% Aids cases 86.2% were on antiretroviral therapy (ART), and 74.8% of them had undetectable HIV viral load 14.6% met MS criteria, and mean CVR at 10 years was 6.67%. IO was detected in 11% of cases. Patients with IO were more immunosuppressed (CD4 count 369 vs 483/μL, p<0.0001), presented a higher prevalence of detectable HIV viral load (17.6% vs 8.9%; p<0.005), and of Aids cases (14.9% vs 8.7%; p<0.023), and lower plasma levels of cholesterol, HDLc and LDLc (154 vs 183, 34 vs 43, 93 vs 110 mg/dL, respectively; p<0.0001. In the multivariate analysis, the only related factor was CD4 count <350 cell/μL (OR 2.86, 95% CI 1.6-4.9; p<0.0001). IO was not associated with CVR nor with MS. Conclusions: IO is not uncommon in HIV patients, and it is only related with immunosuppression defined as CD4 count <350 cell/ mL, and in contrast to general population, it is not related with increased CVR nor with MS.
Resumo:
The Firmicutes bacteria participate extensively in virulence and pathological processes. Enterococcus faecalis is a commensal microorganism; however, it is also a pathogenic bacterium mainly associated with nosocomial infections in immunocompromised patients. Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups involved in diverse biological processes, whose in vivo formation requires several specific protein machineries. Escherichia coli is one of the most frequently studied microorganisms regarding [Fe-S] cluster biogenesis and encodes the iron-sulfur cluster and sulfur assimilation systems. In Firmicutes species, a unique operon composed of the sufCDSUB genes is responsible for [Fe-S] cluster biogenesis. The aim of this study was to investigate the potential of the E. faecalis sufCDSUB system in the [Fe-S] cluster assembly using oxidative stress and iron depletion as adverse growth conditions. Quantitative real-time polymerase chain reaction demonstrated, for the first time, that Gram-positive bacteria possess an OxyR component responsive to oxidative stress conditions, as fully described for E. coli models. Likewise, strong expression of the sufCDSUB genes was observed in low concentrations of hydrogen peroxide, indicating that the lowest concentration of oxygen free radicals inside cells, known to be highly damaging to [Fe-S] clusters, is sufficient to trigger the transcriptional machinery for prompt replacement of [Fe-S] clusters.