993 resultados para IMPLANT-SUPPORTED PROSTHESES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methanol-tolerant Pt-Pd alloy catalysts supported on to carbon with varying Pt:Pd atomic ratios of 1:1, 2:1 and 3:1 are prepared by a novel wet-chemical method and characterized using powder XRD, XPS, FESEM, EDAX and TEM techniques. The optimum atomic weight ratio for Pt to Pd in the carbon-supported alloy catalyst as established by linear-sweep voltammetry (LSV) and cell polarization studies is found to be 2:1. A direct methanol fuel cell (DMFC) employing carbon-supported Pt-Pd (2:1) alloy (Pt-Pd/C) catalyst as the cathode catalyst delivers a peak-power density of 115 mW/cm(2) at 70 degrees C as compared to peak-power density of 60 mW/cm(2) obtained with the DMFC employing carbon-supported Pt (Pt/C) catalyst operating under similar conditions. In the literature, DMFCs operating with Pt-TiO2 (2:1)/C and Pt-Au (2:1)/C methanol-tolerant cathodes are reported to exhibit maximum ORR activity among the group of these methanol-tolerant cathodes with varying catalysts compositions. Accordingly, the present study also provides an effective route to design methanol-tolerant-oxygen-reduction catalysts for DMFCs. (C) 2011 The Electrochemical Society. DOI: 10.1149/1.3596542] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic oxidation and decomposition of NH3 have been carried out over combustion synthesized Al2O3 and CeO2 supported Pt, Pd and Ag catalysts using temperature programmed reaction (TPR) technique in a packed bed tubular reactor. Metals are ionically dispersed over CeO2 and fine metal particles are found on Al2O3. NH3 oxidation occurs over 1% Pt/Al2O3, 1% Pd/Al2O3 and 1% Ag/Al2O3 at 175, 270 and 350 C respectively producing N-2, NO, N2O and H2O, whereas 1% Pt/CeO2, 1% Pd/CeO2 and 1% Ag/CeO2 give N-2 along with NO, N2O and H2O at 200, 225 and 250degreesC respectively. N-2 predominates over other nitrogen-containing products during the reaction on all catalysts. At less O-2 concentration, N-2 and H2O are the only products obtained during NH3 Oxidation. NH3 decomposition over all the catalysts occurs above 450degreesC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-supported 40W Direct Methanol Fuel Cell (DMFC) system has been developed and performance tested. The auxiliaries in the DMFC system comprise a methanol sensor, a liquid-level indicator, and fuel and air pumps that consume a total power of about 5W. The system has a 15-cell DMFC stack with active electrode-area of 45 cm(2). The self-supported DMFC system addresses issues related to water recovery from the cathode exhaust, and maintains a constant methanol-feed concentration with thermal management in the system. Pure methanol and water from cathode exhaust are pumped to the methanol-mixing tank where the liquid level is monitored and controlled with the help of a liquid-level indicator. During the operation, methanol concentration in the feed solution at the stack outlet is monitored using a methanol sensor, and pure methanol is added to restore the desired methanol concentration in the feed tank by adding the product water from the cathode exhaust. The feed-rate requirements of fuel and oxidant are designed for the stack capacity of 40W. The self-supported DMFC system is ideally suited for various defense and civil applications and, in particular, for charging the storage batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limiting solutions are derived for the flexure of simply supported many-sided regular polygons, as the number of sides is increased indefinitely. It is shown that these solutions are different from those for simply supported circular plates. For axisymmetric loading, circular plate solutions overestimate the deflexions and the moments by significant factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microwave-based methods are widely employed to synthesize metal nanoparticles on various substrates. However, the detailed mechanism of formation of such hybrids has not been addressed. In this paper, we describe the thermodynamic and kinetic aspects of reduction of metal salts by ethylene glycol under microwave heating conditions. On the basis of this analysis, we identify the temperatures above which the reduction of the metal salt is thermodynamically favorable and temperatures above which the rates of homogeneous nucleation of the metal and the heterogeneous nucleation of the metal on supports are favored. We delineate different conditions which favor the heterogeneous nucleation of the metal on the supports over homogeneous nucleation in the solvent medium based on the dielectric loss parameters of the solvent and the support and the metal/solvent and metal/support interfacial energies. Contrary to current understanding, we show that metal particles can be selectively formed on the substrate even under situations where the temperature of the substrate Is lower than that of the surrounding medium. The catalytic activity of the Pt/CeO(2) and Pt/TiO(2) hybrids synthesized by this method for H(2) combustion reaction shows that complete conversion is achieved at temperatures as low as 100 degrees C with Pt-CeO(2) catalyst and at 50 degrees C with Pt-TiO(2) catalyst. Our method thus opens up possibilities for rational synthesis of high-activity supported catalysts using a fast microwave-based reduction method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noble metal ions like Pt(IV) and Pd(II) were impregnated on gamma-alumina and aerosol 300 silica surfaces. Reduction of these ions using ammonia borane in the solid state resulted in the formation of the respective metal nanoparticles embedded in BNHx polymer which is dispersed on the oxide support. Removal of the BNH polymer was accomplished by washing the samples repeatedly with methanol. In this process the polymer undergoes solvolysis to release H-2 accompanied by the formation of ammonium methoxy borate salt, which has been removed by repeated methanol washings. As a result, metal nanoparticles well dispersed on gamma-alumina and aerosol 300 silica were obtained. These samples have been characterized by a combination of techniques, including electron microscopy, powder X-ray diffraction, NMR spectroscopy and surface area analyser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molybdenum carbide (MoC) and tungsten carbide (WC) are synthesized by direct carbonization method. PtRu catalysts supported on MoC, WC, and Vulcan XC-72R are prepared, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy in conjunction with electrochemistry. Electrochemical activities for the catalysts towards methanol electro-oxidation are studied by cyclic voltammetry. All the electro-catalysts are subjected to accelerated durability test (ADT). The electrochemical activity of carbide-supported electro-catalysts towards methanol electro-oxidation is found to be higher than carbon-supported catalysts before and after ADT. The study suggests that PtRu/MoC and PtRu/WC catalysts are more durable than PtRu/C. Direct methanol fuel cells (DMFCs) with PtRu/MoC and PtRu/WC anodes also exhibit higher performance than the DMFC with PtRu/C anode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anatase phase of titania (TiO2) nano-photocatalysts was prepared using a modified sol gel process and thereafter embedded on carbon-covered alumina supports. The carbon-covered alumina (CCA) supports were prepared via the adsorption of toluene 2,4-diisocyanate (TDI) on the surface of the alumina. TDI was used as the carbon source for the first time for the carbon-covered alumina support system. The adsorption of TDI on alumina is irreversible; hence, the resulting organic moiety can undergo pyrolysis at high temperatures resulting in the formation of a carbon coating on the surface of the alumina. The TiO2 catalysts were impregnated on the CCA supports. X-ray diffraction analysis indicated that the carbon deposited on the alumina was not crystalline and also showed the successful impregnation of TiO2 on the CCA supports. In the Raman spectra, it could be deduced that the carbon was rather a conjugated olefinic or polycyclic hydrocarbons which can be considered as molecular units of a graphitic plane. The Raman analysis of the catalysed CCAs showed the presence of both the anatase titania and D and G band associated with the carbon of the CCAs. The scanning electron microscope micrographs indicated that the alumina was coated by a carbon layer and the energy dispersive X-ray spectra showed the presence of Al, O and C in the CCA samples, with the addition of Ti for the catalyst impregnated supports. The Brunauer Emmet and Teller surface area analysis showed that the incorporating of carbon on the alumina surface resulted in an increase in surface area, while the impregnation with TiO2 resulted in a further increase in surface area. However, a decrease in the pore volume and diameter was observed. The photocatalytic activity of the nanocatalysts was studied for the degradation of Rhodamine B dye. The CCA-TiO2 nanocatalysts were found to be more photocatalytically active under both visible and UV light irradiation compared to the free TIO2 nanocatalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As Polymer Electrolyte Fuel Cells (PEFCs) are nearing the acceptable performance level for automotive and stationary applications, the focus on the research is shifting more and more toward enhancing their durability that still remains a major concern in their commercial acceptability. Hydrous ruthenium oxide (RuO2) is a promising material for pseudocapacitors due to its high stability, high specific-capacitance and rapid faradaic-reaction. Incorporation of carbon-supported RuO2 (RuO2/C) to platinum (Pt) is found to ameliorate both stability and catalytic activity of fuel cell cathodes that exhibit higher performance and durability in relation to Pt/C cathodes as evidenced by cell polarization, impedance and cyclic voltammetry data. The degradation in performance of Pt-RuO2/C cathodes is found to be only similar to 8% after 10000 accelerated stress test (AST) cycles as against similar to 60% for Pt/C cathodes after 7000 AST cycles under similar conditions. These data are in conformity with the Electrochemical Surface Area and impedance results. Interestingly, Pt-RuO2/C cathodes can withstand more than 10000 AST cycles with only a nominal loss in their performance. Studies on catalytic electrodes with X-ray diffraction, transmission electron microscopy and cross-sectional field-emission scanning electron microscopy reflect that incorporation of RuO2 to Pt helps mitigating aggregation of Pt particles and improves its stability during long-term operation of PEFCs. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.jes113440] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supported catalysts containing 15 wt.% of molybdenum have been prepared by the incipient wetness impregnation method. CaO, MgO, Al2O3, Zr(OH)4 and Al(OH)3 have been used as supports for the preparation of supported Mo catalysts. Characterisation of all the materials prepared has been carried out through BET surface area measurement, X-ray diffractometry and FT-IR spectroscopy. Catalytic activity measurements have been carried out with reference to structure-sensitive benzyl alcohol conversion in the liquid phase. The percentage conversion of benzyl alcohol to benzaldehyde and toluene varied over a large range depending on the support used for the preparation of catalysts, indicating the importance of the support on catalytic activity of Mo catalysts. Al(OH)3 has been found to be the best support for molybdenum among all the supports used. Support–metal interaction (SMI) has been found to play an important role in determining the catalytic activity of supported catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-ion (Ag, Co, Ni, and Pd) doped TiO2 nanocatalysts were successfully embedded on carbon-covered alumina supports. The CCA-embedded catalysts were crystalline and had a high surface area compared to the free metal-ion doped titania nanocatalysts while they still retained the anatase phase of the core TiO2. These catalysts were photocatalytically active under solar light irradiation. Rhodamine B was used as a model pollutant and the reactivity followed a pseudo-first-order reaction kinetics. The reaction rate of the CCA-supported catalysts was Pd > Ag > Co > Ni. Among the ratios of the CCA:catalyst used, it was found that the 1:1 ratio had the fastest reaction rate, followed by the 1:2 ratio, while the 2:1 ratio exhibited the lowest reaction rate. The CCA/metal-ion doped titania were found to have photocatalytic activities comparable with those of CCA-supported titania.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pore forming toxins are being classified in the protein community based on their ability of forming pores in living cell membranes. Some initial study has apparently pointed out the crystallographic pathway rather can be viewed as a structural as well as morphological changes of proteins in terms of self assembly before and during the pore formation process in surfactant medium. Being a water soluble compound, it changes its conformation and originates some pre-pore complex, which later partially goes inside the cell membrane causing a pore. The physical mechanism for this whole process is still unknown. In this study we have tried to understand these types of biological processes from physical point of view by using supported lipid bilayer as a model system.