902 resultados para Hypoxic-ischemic encephalopathy
Resumo:
Sources of Funding The GWTG-Stroke program is currently supported in part by a charitable contribution from Bristol-Myers Squibb/Sanofi Pharmaceutical Partnership and the American Heart Association Pharmaceutical Roundtable. GWTG-Stroke has been funded in the past through support from Boehringer-Ingelheim and Merck. These funding agencies did not participate in design or analysis, manuscript preparation, or approval of this study.
Resumo:
Ischemia caused by coronary artery disease and myocardial infarction leads to aberrant ventricular remodeling and cardiac fibrosis. This occurs partly through accumulation of gene expression changes in resident fibroblasts, resulting in an overactive fibrotic phenotype. Long-term adaptation to a hypoxic insult is likely to require significant modification of chromatin structure in order to maintain the fibrotic phenotype. Epigenetic changes may play an important role in modulating hypoxia-induced fibrosis within the heart. Therefore, the aim of the study was to investigate the potential pro-fibrotic impact of hypoxia on cardiac fibroblasts and determine whether alterations in DNA methylation could play a role in this process. This study found that within human cardiac tissue, the degree of hypoxia was associated with increased expression of collagen 1 and alpha-smooth muscle actin (ASMA). In addition, human cardiac fibroblast cells exposed to prolonged 1% hypoxia resulted in a pro-fibrotic state. These hypoxia-induced pro-fibrotic changes were associated with global DNA hypermethylation and increased expression of the DNA methyltransferase (DNMT) enzymes DNMT1 and DNMT3B. Expression of these methylating enzymes was shown to be regulated by hypoxia-inducible factor (HIF)-1α. Using siRNA to block DNMT3B expression significantly reduced collagen 1 and ASMA expression. In addition, application of the DNMT inhibitor 5-aza-2'-deoxycytidine suppressed the pro-fibrotic effects of TGFβ. Epigenetic modifications and changes in the epigenetic machinery identified in cardiac fibroblasts during prolonged hypoxia may contribute to the pro-fibrotic nature of the ischemic milieu. Targeting up-regulated expression of DNMTs in ischemic heart disease may prove to be a valuable therapeutic approach.
Resumo:
It is becoming increasingly apparent that epigenetics plays a crucial role in the cellular response to hypoxia. Such epigenetic regulation may work hand in hand with the hypoxia-induced transcription factor (HIF) family or may contribute in a more substantial way to the maintenance of a hypoxia-adapted cellular phenotype long after HIF has initiated the immediate response pathways. In this article we discuss the current research implicating epigenetic mechanisms in the cellular response to hypoxic environments. This includes; the role of epigenetics in both the stabilization and binding of HIF to its transcriptional targets, the role of histone demethylase enzymes following direct HIF transactivation, and finally, the impact of hypoxic environments on global patterns of histone modifications and DNA methylation.
Resumo:
Systemic Lupus Erythematosus (SLE) is a chronic inflammatory rheumatic disease which affects the connective tissue. Its etiology is as yet unknown, while its pathogenesis involves the immune system. Both genetic and environmental and hormonal factors play a key role in the impaired immune regulation. A correlation with estrogens is demonstrated by the fact that the greatest incidence is found in young women, when estrogen secretion is at its highest. The disease is also reported to worsen in women taking oral contraceptives. It is therefore believed that the components of oral contraceptives, estrogens (ethinyl estradiol) and progestins, can affect the immune profile. Of the various complications attributed to systemic lupus erythematosus, gastrointestinal disorders are less common but potentially by far the most serious. We report a case of ischemic necrosis with sigma perforation in a patient with SLE. Signs and symptoms of acute abdomen in patients with SLE are rare (0.2%), but serious. Most patients require an exploratory laparotomy, as the causes are often linked with vasculitis.
Resumo:
Resumo:
Objectives: To highlight the occurrence of Hashimoto’s encephalopathy – a steroid-responsive encephalopathy associated with elevated antithyroid antibodies. Material and methods: We describe a clinically and biochemically euthyroid patient with an encephalopathy presenting with headache, mild confusion and personality changes for 6 weeks and tonic–clonic seizures upon admission Results: There was no obvious infective or metabolic cause. The patient had a high titre of antithyroid antibodies and responded to steroid therapy. Conclusion: This uncommon disease needs to be considered in patients presenting with neurological symptoms that remain unexplained after routine standard investigations, even when the patient is euthyroid. Early diagnosis is important, as this is a treatable condition.
Resumo:
A 31-year-old man with pontine infarction was referred to our hospital for further evaluation and treatment. At admission, his neurological examination was unremarkable. No lymphadenopathy or skin lesions were found. The Treponema pallidum haemagglutination test, rapid plasma regain test and fluorescent treponemal antibody absorption test of immunoglobulin G were positive in both serum and cerebrospinal fluid (CSF). CSF analysis showed lymphocytic pleocytosis. The patient had male-to-male sexual contact and was found to be HIV positive. Physicians should be aware that acute ischaemic stroke may be the first manifestation of neurosyphilis in a young adult, especially with HIV infection.
Resumo:
Introduction: Despite adherence to current guidelines regarding dose adjustment and drug-level monitoring, beta-lactam-induced encephalopathy can still occur in the setting of chronic renal impairment. Case Report: We report what we believe is the first case of piperacillin- and tazobactam-induced encephalopathy in a patient with pre-existing cefepime-induced encephalopathy in the context of end-stage kidney disease despite adequate dose adjustment for renal impairment.
Resumo:
An 81-year-old female patient required numerous admissions for symptoms of confusion, visual hallucinations, myoclonus and seizures, which were treated as stroke, infections and viral encephalitis with some improvement after treatment but with recurrence that caused her to be readmitted to hospital. On the last admission, she was found to have very high antithyroid antibodies and a diagnosis of Hashimoto’s encephalopathy was made, with an overwhelming response to steroids.
Resumo:
Background and Purpose - Loss of motor function is common after stroke and leads to significant chronic disability. Stem cells are capable of self-renewal and of differentiating into multiple cell types, including neurones, glia, and vascular cells. We assessed the safety of granulocyte-colony-stimulating factor (G-CSF) after stroke and its effect on circulating CD34 stem cells. Methods - We performed a 2-center, dose-escalation, double-blind, randomized, placebo-controlled pilot trial (ISRCTN 16784092) of G-CSF (6 blocks of 1 to 10 g/kg SC, 1 or 5 daily doses) in 36 patients with recent ischemic stroke. Circulating CD34 stem cells were measured by flow cytometry; blood counts and measures of safety and functional outcome were also monitored. All measures were made blinded to treatment. Results - Thirty-six patients, whose mean SD age was 768 years and of whom 50% were male, were recruited. G-CSF (5 days of 10 g/kg) increased CD34 count in a dose-dependent manner, from 2.5 to 37.7 at day 5 (area under curve, P0.005). A dose-dependent rise in white cell count (P0.001) was also seen. There was no difference between treatment groups in the number of patients with serious adverse events: G-CSF, 7/24 (29%) versus placebo 3/12 (25%), or in their dependence (modified Rankin Scale, median 4, interquartile range, 3 to 5) at 90 days. Conclusions - ”G-CSF is effective at mobilizing bone marrow CD34 stem cells in patients with recent ischemic stroke. Administration is feasible and appears to be safe and well tolerated. The fate of mobilized cells and their effect on functional outcome remain to be determined. (Stroke. 2006;37:2979-2983.)
Resumo:
International audience
Resumo:
Following cultivation of distinct mesenchymal stem cell (MSC) populations derived from human umbilical cord under hypoxic conditions (between 1.5% to 5% oxygen (O-2)) revealed a 2- to 3-fold reduced oxygen consumption rate as compared to the same cultures at normoxic oxygen levels (21% O-2). A simultaneous measurement of dissolved oxygen within the culture media from 4 different MSC donors ranged from 15 mu mol/L at 1.5% O-2 to 196 mu mol/L at normoxic 21% O-2. The proliferative capacity of the different hypoxic MSC populations was elevated as compared to the normoxic culture. This effect was paralleled by a significantly reduced cell damage or cell death under hypoxic conditions as evaluated by the cellular release of LDH whereby the measurement of caspase 3/7 activity revealed little if any differences in apoptotic cell death between the various cultures. The MSC culture under hypoxic conditions was associated with the induction of hypoxia-inducing factor-alpha (HIF-1 alpha) and an elevated expression of energy metabolism-associated genes including GLUT-1, LDH and PDK1. Concomitantly, a significantly enhanced glucose consumption and a corresponding lactate production could be observed in the hypoxic MSC cultures suggesting an altered metabolism of these human stem cells within the hypoxic environment.
Resumo:
Posterior reversible encephalopathy syndrome (PRES) is a clinico-neuro-radiological diagnosis, which can complicate a wide range of conditions. Clinical features include generalised and/or focal neurological deficits. These features are also present in neurovascular disorders, such as stroke. Currently, emphasis in the management of hyperacute stroke is thrombolysis, and it is important to bear in mind stroke mimics as a possible cause of clinical features. The Authors present the case of a 66-year-old man, who presented with acute focal neurological deficit. His brain imaging and history were consistent with PRES.