990 resultados para Hydrogen permeation current
Resumo:
Abstract is not available.
Resumo:
This review of grader grass (Themeda quadrivalvis) attempts to collate current knowledge and identify knowledge gaps that may require further research. Grader grass is a tropical annual grass native to India that is now spread throughout many of the tropical regions of the world. In Australia, it has spread rapidly since its introduction in the 1930s and is now naturalised in the tropical areas of Queensland, the Northern Territory and Western Australia and extends south along the east coast to northern New South Wales. It is a vigorous grass with limited palatability, that is capable of invading native and improved pastures, cropping land and protected areas such as state and national parks. Grader grass can form dense monocultures that reduce biodiversity, decrease animal productivity and increase the fire hazard in the seasonally dry tropics. Control options are based on herbicides, grazing management and slashing, while overgrazing appears to favour grader grass. The effect of fire on grader grass is inconclusive and needs to be defined. Little is known about the biology and impacts of grader grass in agricultural and protected ecosystems in Australia. In particular, information is needed on soil seed bank longevity, seed production, germination and growth, which would allow the development of management strategies to control this weedy grass.
Resumo:
Reductive acetogenesis is an alternative to methanogenesis for removing hydrogen produced during enteric fermentation. In Australia, kangaroos have evolved an enlarged forestomach analogous to the rumen of sheep and cattle. However, unlike sheep and cattle, kangaroos produce very little methane from enteric fermentation. From samples of gut contents from five eastern grey and three red kangaroos, we were not able to detect methanogens using a PCR protocol, but did detect the formyltetrahydrofolate synthetase (FTHFS) gene (likely to be used for reductive acetogenesis) in all animals. Isolations to recover acetogens resulted in two different classes of hydrogen consuming bacteria being isolated. The first class consisted of acetogens that possessed the FTHFS gene, which except for Clostridium glycolicum, were not closely related to any previously cultured bacteria. The second class were not acetogens but consisted of enterobacteria (Escherichia coli and Shigella) that did not possess FTHFS genes but did utilise hydrogen and produce acetate. Enumeration of the acetogens containing the FTHFS gene by real-time PCR indicated that bacteria of the taxa designated YE257 were common to all the kangaroos whereas YE266/YE273 were only detected in eastern grey kangaroos. When present, both species occurred at densities above *106 cell equivalents per mL. C. glycolicum was not detected in the kangaroos and, unlike YE257 and YE266/273, is unlikely to play a major role in reductive acetogenesis in the foregut of kangaroos.
Resumo:
Improving the genetic base of cultivars that underpin commercial mango production is generally recognized as necessary for long term industry stability. Genetic improvement can take many approaches to improve cultivars, each with their own advantages and disadvantages. This paper will discuss several approaches used in the genetic improvement of mangoes in Australia, including varietal introductions, selection of monoembryonic progeny, selection within polyembryonic populations, assisted open pollination and controlled closed pollination. The current activities of the Australian National Mango Breeding Program will be outlined, and the analysis and use of hybrid phenotype data from the project for selection of next generation parents will be discussed. Some of the important traits that will enhance the competitiveness of future cultivars will be introduced and the challenges in achieving them discussed. The use of a genomics approach and its impact on future mango breeding is examined.
Resumo:
The frequency range of the current source inverter (CSI) is limited by the slow commutation process in the inverter circuit. A method to reduce the commutation time and to limit the commutation capacitor voltage is proposed. A brief description of the conventional CSI and a detailed analysis of the commutation intervals of the proposed circuit are given. The experimental waveforms observed in the laboratory verify the validity of the analysis.
Resumo:
The perturbation treatment previously given is extended to explain the process of hydrogen abstraction from the various hydrogen donor molecules by the triplet nπ* state of ketones or the ground state of the alkyl or alkoxy radical. The results suggest that, as the ionization energy of the donor bonds is decreased, the reaction is accelerated and it is not influenced by the bond strength of the donor bonds. The activation barrier in such reactions arises from a weakening of the charge resonance term as the ionization energy of the donor bond increases.
Resumo:
Proton second moment (M2) and spin-lattice relaxation time (T1) of Ammonium Hydrogen Bischloroacetate (ABCA) have been measured in the range 77-350 K. A value of 6.5 G2 has been observed for the second moment at room temperature, which is typical of NH4+ reorientation and also a second moment transition in the range 170-145 K indicates the freezing of NH4+ motion. The NMR signal disappears dicontinuously at 128 K. Proton spin-lattice relaxation time (T1) Vs temperature, yielded only one sharp miniumum of 1.9 msec which is again typical of NH4+ reorientation. A slope change at 250 K is also observed, prbably due to CH2 motion. Further, the FID signal disappears at 128 K. Thus the Tc appears to be 128 K (of two reported values 120 K and 128 K). Activation energies have been calculated and the mechanism of the phase transition is discussed.
Resumo:
For an understanding of the cation selectivity and general binding characteristics of macrotetralide antibiotic nonactin (NA) with ions of different sizes and charges, the nature of binding of divalent cation, Ca2+, to NA and conformation of the NA-Ca2+ complex have been studied by use of 270-MHz proton nuclear magnetic resonance ('H NMR) and carbon-13 nuclear magnetic resonance (13C NMR). The calcium ion induced significantly large changes in chemical shifts for H7, H2, H3, and H5 protons of NA and relatively small changes for H18 and H2' protons. Changes in I3C chemical shift were quite large for carbonyl carbon, C,; it is noteworthy that in the NA-K+ complex, H2 and H2' protons practically do not show any change during complexation and carbonyl carbon shows a much smaller chemical shift change.
Resumo:
A perturbation treatment was developed for the comparative study of the abstraction of hydrogen from methane by formaldehyde and thioformaldehyde in their nπ* and ππ* states. Both in-plane and perpendicularplane reactions are considered. Results are qualitative but reveal clearly the prominent distinguishing features of these two photochemical processes in agreement with the experimental observations.
Resumo:
Permeation of gases through single surfactant stabilized aqueous films has previously been studied in view of the potentiality of foam to separate gaseous mixtures. The earlier analysis assumed that the gas phase was well mixed and that the mass-transfer process was completely controlled by the liquid film. Permeabilities evaluated from single film data based on such analysis failed to predict the mass-transfer data obtained on permeation through two films. It is shown that the neglect of gas-phase resistance and the effect of film movement is the reason for the failure of the well-mixed gas models. An exact analysis of diffusion through two films is presented. It successfully predicts the experimental data on two films based on parameters evaluated from single film data.
Heat exposure and hypothyroid conditions decrease hydrogen peroxide generation in liver mitochondria
Resumo:
Exposure of rats to heat (39 +/- 1 degree C) decreased H2O2 generation in mitochondria of the liver, but not of the kidney or the heart. The effect was obtained with three substrates, succinate, glycerol 1-phosphate and choline, with a decrease to 50% in the first 2-3 days of exposure, and a further decrease on longer exposure. The dehydrogenase activity with only glycerol 1-phosphate decreased, which is indicative of the hypothyroid condition, whereas choline dehydrogenase activity remained unchanged and that of succinate dehydrogenase decreased on long exposure. The serum concentration of thyroxine decreased in heat-exposed rats. Thyroxine treatment of rats increased H2O2 generation. Hypothyroid conditions obtained by treatment with propylthiouracil or thyroidectomy caused a decrease in H2O2 generation and changes in dehydrogenase activities similar to those with heat exposure. Treatment of heat-exposed or thyroidectomized rats with thyroxine stimulated H2O2 generation by a mechanism apparently involving fresh protein synthesis. The results indicate that H2O2 generation in mitochondria of heat-exposed animals is determined by thyroid status.
Resumo:
Correlators of singlet and octet axial currents, as well as anomaly and pseudoscalar densities have been studied using QCD sum rules. Several of these sum rules are used to determine the couplings f(eta)(8),f(eta)(0), f(eta)('8) and f(eta)('0). We find mutually consistent values which are also in agreement with phenomenological values obtained from data on various decay and production rates. While most of the sum rules studied by us are independent of the contributions of direct instantons and screening correction, the singlet-singlet current correlator and the anomaly-anomaly correlator improve by their inclusion.
Resumo:
BACKGROUND There has been intensive debate whether migraine with aura (MA) and migraine without aura (MO) should be considered distinct subtypes or part of the same disease spectrum. There is also discussion to what extent migraine cases collected in specialised headache clinics differ from cases from population cohorts, and how female cases differ from male cases with respect to their migraine. To assess the genetic overlap between these migraine subgroups, we examined genome-wide association (GWA) results from analysis of 23,285 migraine cases and 95,425 population-matched controls. METHODS Detailed heterogeneity analysis of single-nucleotide polymorphism (SNP) effects (odds ratios) between migraine subgroups was performed for the 12 independent SNP loci significantly associated (p < 5 x 10(-8); thus surpassing the threshold for genome-wide significance) with migraine susceptibility. Overall genetic overlap was assessed using SNP effect concordance analysis (SECA) at over 23,000 independent SNPs. RESULTS: Significant heterogeneity of SNP effects (p het < 1.4 x 10(-3)) was observed between the MA and MO subgroups (for SNP rs9349379), and between the clinic- and population-based subgroups (for SNPs rs10915437, rs6790925 and rs6478241). However, for all 12 SNPs the risk-increasing allele was the same, and SECA found the majority of genome-wide SNP effects to be in the same direction across the subgroups. CONCLUSIONS Any differences in common genetic risk across these subgroups are outweighed by the similarities. Meta-analysis of additional migraine GWA datasets, regardless of their major subgroup composition, will identify new susceptibility loci for migraine.