914 resultados para Humid areas
Resumo:
Aim Species generally become rarer and more patchily distributed as the margins of their ranges are approached. We predicted that in such marginal sites, tree species would tend to occur where some key environmental factors are at particularly favourable levels, compensating in part for the low overall suitability of marginal sites.
Location The article considers the spatial distributions of trees in Southeast Alaska (the Alaskan 'panhandle').
Methods We quantified range marginality using spatial distributions of eight tree species across more than one thousand surveyed sites in Southeast Alaska. For each species we derived a site core/margin index using a three-dimensional trend surface generated from logistic regression on site coordinates. For each species, the relationships between the environmental factors slope, aspect and site marginality were then compared for occupied and unoccupied sets of sites.
Results We found that site slope is important for more Alaskan tree species than aspect. Three out of eight had a significant core/margin by occupied/unoccupied interaction, tending to be present in significantly shallower-sloped (more favourable) sites in the marginal areas than the simple core/margin trend predicted. For site aspect, one species had a significant interaction, selecting potentially more favourable northerly aspects in marginal areas. A finer-scale analysis based on the same data came to the same overall conclusions.
Conclusions There is evidence that several tree species in Alaska tend to occur in especially favourable sites in marginal areas. In these marginal areas, these species amplify habitat preferences shown in core areas.
Resumo:
From 1989 to 1994 a series of papers outlined evidence for a brief episode of climate change from arid to humid, and then back to arid, during the Carnian Stage of the late Triassic. This time of climate change was compared to marine and terrestrial biotic changes, mainly extinction and then radiation of flora and fauna. Subsequently termed, albeit incorrectly, the Carnian Pluvial Event (CPE) by successive authors, interest in this episode of climatic change has increased steadily, with new evidence being published as well as several challenges to the theory. The exact nature of this humid episode, whether reflecting widespread precipitation or more local effects, as well as its ultimate cause remains equivocal. Bed-by-bed sampling of the Carnian in the Southern Alps (Dolomites), shows the episode began with a negative carbon isotope excursion that lasted for only part of one ammonoid zone (A. austriacum). However, that the Carnian Humid Episode represents a significantly longer period, both environmentally and biotically, is irrefutable. The evidence is strongest in the European, Middle East, Himalayan, North American and Japanese successions, but not always so clear in South America, Antarctica and Australia. The eruption of the Wrangellia Large Igneous Province and global warming (causing increased evaporation in the Tethyan and Panthalassic oceans) are suggested as causes for the humid episode.
Resumo:
Cadmium and lead were determined in fruit and vegetable produce (~1300 samples) collected from a field and market basket study of locally grown produce from the South-West of Britain (Devon and Cornwall). These were compared with similarly locally grown produce from the North-East of Britain (Aberdeenshire). The concentrations of cadmium and lead in the market basket produce were compared to the maximum levels (ML) set by the European Union (EU). For cadmium 0.2% of the samples exceeded the ML, and 0.6% of the samples exceeded the ML for lead. The location of cadmium and lead in potatoes was performed using laser ablation ICP-MS. All tested samples exhibited higher lead concentrations, and most exhibited increased concentrations of cadmium in the potato skin compared to the flesh. The concentrations of cadmium and lead found in fruits and vegetables sampled during this study do not increase concern about risk to human health.
Resumo:
In this paper, we introduce a novel approach to face recognition which simultaneously tackles three combined challenges: 1) uneven illumination; 2) partial occlusion; and 3) limited training data. The new approach performs lighting normalization, occlusion de-emphasis and finally face recognition, based on finding the largest matching area (LMA) at each point on the face, as opposed to traditional fixed-size local area-based approaches. Robustness is achieved with novel approaches for feature extraction, LMA-based face image comparison and unseen data modeling. On the extended YaleB and AR face databases for face identification, our method using only a single training image per person, outperforms other methods using a single training image, and matches or exceeds methods which require multiple training images. On the labeled faces in the wild face verification database, our method outperforms comparable unsupervised methods. We also show that the new method performs competitively even when the training images are corrupted.