919 resultados para Human-induced Loads


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asthma is a chronic inflammatory disease of the airways that involves many cell types, amongst which mast cells are known to be important. Adenosine, a potent bronchoconstricting agent, exerts its ability to modulate adenosine receptors of mast cells thereby potentiating derived mediator release, histamine being one of the first mediators to be released. The heterogeneity of sources of mast cells and the lack of highly potent ligands selective for the different adenosine receptor subtypes have been important hurdles in this area of research. In the present study we describe compound C0036E08, a novel ligand that has high affinity (pK(i) 8.46) for adenosine A(2B) receptors, being 9 times, 1412 times and 3090 times more selective for A(2B) receptors than for A(1), A(2A) and A(3) receptors, respectively. Compound C0036E08 showed antagonist activity at recombinant and native adenosine receptors, and it was able to fully block NECA-induced histamine release in freshly isolated mast cells from human bronchoalveolar fluid. C0036E08 has been shown to be a valuable tool for the identification of adenosine A(2B) receptors as the adenosine receptors responsible for the NECA-induced response in human mast cells. Considering the increasing interest of A(2B) receptors as a therapeutic target in asthma, this chemical tool might provide a base for the development of new anti-asthmatic drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To describe the effect of HAART on Kaposi sarcoma herpes virus (KSHV) antibody response and viremia among HIV-positive MSM. DESIGN: A follow-up study of 272 HIV-positive MSM (including 22 with Kaposi sarcoma) who first initiated HAART between January 1996 and July 2004 in the Swiss HIV Cohort Study. METHODS: For each individual, two serum samples, one at HAART initiation and another 24 months later, were tested for latent and lytic KSHV antibodies using immunofluorescence assays, and for KSHV viremia using PCR. Factors associated with changes in KSHV antibody titers and viremia were evaluated. RESULTS: At HAART initiation, 69.1 and 75.0% of patients were seropositive to latent and lytic KSHV antibodies, respectively. Seropositivity was associated with the presence of Kaposi sarcoma, older age, lower CD8 cell count and higher CD4/CD8 ratio. Prevalence of KSHV viremia at HAART initiation was 6.4%, being significantly higher among patients with Kaposi sarcoma (35.0%), and those with HIV viral loads 100 000 copies/ml (11.7%) or higher. At 24-month follow-up, geometric mean titers (GMTs) among KSHV seropositive patients increased and antibody seroprevalence was higher. Having Kaposi sarcoma and/or CD4 cell counts less than 50 cells/microl at HAART initiation was associated both with higher probability for antibody titers to increase (including seroconversion) and larger increases in GMTs. Only one of 17 viremic patients at HAART initiation had viremia at 24-month follow-up. CONCLUSION: HAART increases KSHV-specific humoral immune response and clearance of viremia among HIV-infected MSM, consistent with the dramatic protection offered by HAART against Kaposi sarcoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viruses have evolved many distinct strategies to avoid the host's apoptotic response. Here we describe a new family of viral inhibitors (v-FLIPs) which interfere with apoptosis signalled through death receptors and which are present in several gamma-herpesviruses (including Kaposi's-sarcoma-associated human herpesvirus-8), as well as in the tumorigenic human molluscipoxvirus. v-FLIPs contain two death-effector domains which interact with the adaptor protein FADD, and this inhibits the recruitment and activation of the protease FLICE by the CD95 death receptor. Cells expressing v-FLIPs are protected against apoptosis induced by CD95 or by the related death receptors TRAMP and TRAIL-R. The herpesvirus saimiri FLIP is detected late during the lytic viral replication cycle, at a time when host cells are partially protected from CD95-ligand-mediated apoptosis. Protection of virus-infected cells against death-receptor-induced apoptosis may lead to higher virus production and contribute to the persistence and oncogenicity of several FLIP-encoding viruses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Helicobacter-induced gastritis is considered nowadays an epidemic, the prevalence of which is one of the highest world-wide (70%), with as much as 40% of the population in industrialized countries. Helicobacter pylori (H. pylori) antigens (Ag) capable to elicit a protective immune response in animal models have been identified, but these antigens have not been shown to be strongly immunogenic when administered to humans. Due to their stability in the gastric environment and avidity, passive administration of secretory immunoglobulin A (SIgA) antibodies (Ab) targeting protective Ag might be particularly relevant as a substitute or complement to current therapies. To this aim, we have designed expression vectors to convert a scFv polypeptide specific for H. pylori urease subunit A into human IgG, polymeric IgA (IgAp/d) and SIgA. Purified proteins show proper binding characteristics toward both the native and denatured forms of H. pylori urease. The direct comparison between different isotype and molecular forms, but of unique specificity, demonstrates that SIgA and IgAp/d are more efficient in blocking free and H. pylori-associated urease than IgG and scFv. We conclude that the expression system reported herein will represent a valuable tool to produce human SIgA Ab of multiple specificities against H. pylori antigens involved in colonization and persistence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The specific interactions of the pairs laminin binding protein (LBP)-purified tick-borne encephalitis viral surface protein E and certain recombinant fragments of this protein, as well as West Nile viral surface protein E and certain recombinant fragments of that protein, are studied by combined methods of single-molecule dynamic force spectroscopy (SMDFS), enzyme immunoassay and optical surface waves-based biosensor measurements. The experiments were performed at neutral pH (7.4) and acid pH (5.3) conditions. The data obtained confirm the role of LBP as a cell receptor for two typical viral species of the Flavivirus genus. A comparison of these data with similar data obtained for another cell receptor of this family, namely human αVβ3 integrin, reveals that both these receptors are very important. Studying the specific interaction between the cell receptors in question and specially prepared monoclonal antibodies against them, we could show that both interaction sites involved in the process of virus-cell interaction remain intact at pH 5.3. At the same time, for these acid conditions characteristic for an endosome during flavivirus-cell membrane fusion, SMDFS data reveal the existence of a force-induced (effective already for forces as small as 30-70 pN) sharp globule-coil transition for LBP and LBP-fragments of protein E complexes. We argue that this conformational transformation, being an analog of abrupt first-order phase transition and having similarity with the famous Rayleigh hydrodynamic instability, might be indispensable for the flavivirus-cell membrane fusion process. Copyright © 2014 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity is associated with skeletal muscle insulin resistance, which is a crucial step in the development of type 2 diabetes. Among the mechanisms by which obesity may lead to insulin resistance, lipotoxicity is one of the hypotheses being explored; others include inflammation or the oxidative stress hypotheses. This review focuses on the role of diacylglycerols (DAG), a family of lipid metabolites implicated in the pathogenesis of lipotoxicity and insulin resistance. While recent studies report contradictory results in humans with regard to the importance of DAG-induced insulin resistance in skeletal muscle, other current literature highlight a potential role for DAG as signalling molecules. This review will discuss possible hypotheses explaining these contradictory results and the need to explore further the role of DAG in human metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic cells (DCs) are professional APCs that have a role in the initiation of adaptive immune responses and tolerance. Among the tolerogenic mechanisms, the expression of the enzyme IDO1 represents an effective tool to generate T regulatory cells. In humans, different DC subsets express IDO1, but less is known about the IDO1-related enzyme IDO2. In this study, we found a different pattern of expression and regulation between IDO1 and IDO2 in human circulating DCs. At the protein level, IDO1 is expressed only in circulating myeloid DCs (mDCs) and is modulated by PGE2, whereas IDO2 is expressed in both mDCs and plasmacytoid DCs and is not modulated by PGE2. In healthy subjects, IDO1 expression requires the presence of PGE2 and needs continuous transcription and translation, whereas IDO2 expression is constitutive, independent from suppressor of cytokine signaling 3 activity. Conversely, in patients suffering from inflammatory arthritis, circulating DCs express both IDO1 and IDO2. At the functional level, both mDCs and plasmacytoid DCs generate T regulatory cells through an IDO1/IDO2-dependent mechanism. We conclude that, in humans, whereas IDO1 provides an additional mechanism of tolerance induced by proinflammatory mediators, IDO2 is stably expressed in steady-state conditions and may contribute to the homeostatic tolerogenic capacity of DCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protective efficacy of several recombinat and a synthetic Plasmodium falciparum protein was assessed in Aoutus monkeys. The rp41 aldolase, the 190L fragment of the MSA-1 protein and fusion 190L-CS. T3 protein containg the CS. T3 helper "universal epitope were emulsified in Freund's adjuvants and injected 3 times in groups of 4-5 monkeys each one. The synthetic polymer Spf (66)30 also emulsified in Freund's adjuvants was injected 6 times. Control groups for both experiments were immunized with saline solution in the same adjuvant following the same schedules. Serology for malaria specific antibodies showed seroconversion in monkeys immunized with the recombinant proteins but not in those immunized with the polymer nor in the controls. Challenge was performed with the 10 (elevado a quinta potência) parasites from the P. falciparum FVO isolate. Neither rp41 nor SPf (66)30 induced protection, whereas 190L induced significant delay of parasitemia. The fusion of the CS. T3 epitope to 190L significantly increased is protective capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For many years the epidemiological significance of immunity in human schistosomiasis has been the subject of inconclusive debate. Recently, the results of studies from Brazil and Kenya, on Shistosoma mansoni and from Zimbabwe and The Gambia on S. haematobium have confirmed the importance of protective immunity. In communities in endemic areas the development of immunity to infection only occurs after many years of exposure. In part this due to the slow development of antibodies wich are protective but also to the earlier development of antibody isotypes which lack protective capacity and wich are capable of interfering with the functioning of protective antibodies. Protective antibodies appear to be of the IgE class but some IgG subclasses may be also be important. Initially, blocking antibodies were thought to be predominantly IgM and IgG2 but IgG4 also seems to posses blocking activity. The early production of blocking antibodies and late production of protective antibodies may be indicative of cytokine induced immunoglobulin class swiching caused by the sequential involvment of different lymphokines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons of the substantia nigra pars compacta with unknown aetiology. 6-Hydroxydopamine (6-OHDA) treatment of neuronal cells is an established in vivo model for mimicking the effect of oxidative stress found in PD brains. We examined the effects of 6-OHDA treatment on human neuroblastoma cells (SH-SY5Y) and primary mesencephalic cultures. Using a reverse arbitrarily primed polymerase chain reaction (RAP-PCR) approach we generated reproducible genetic fingerprints of differential expression levels in cell cultures treated with 6-OHDA. Of the resulting sequences, 23 showed considerable homology to known human coding sequences. The results of the RAP-PCR were validated by reverse transcription PCR, real-time PCR and, for selected genes, by Western blot analysis and immunofluorescence. In four cases, [tomoregulin-1 (TMEFF-1), collapsin response mediator protein 1 (CRMP-1), neurexin-1, and phosphoribosylaminoimidazole synthetase (GART)], a down-regulation of mRNA and protein levels was detected. Further studies will be necessary on the physiological role of the identified proteins and their impact on pathways leading to neurodegeneration in PD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Converging evidence favors an abnormal susceptibility to oxidative stress in schizophrenia. Decreased levels of glutathione (GSH), the major cellular antioxidant and redox regulator, was observed in cerebrospinal-fluid and prefrontal cortex of patients. Importantly, abnormal GSH synthesis of genetic origin was observed: Two case-control studies showed an association with a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease associated genotypes (35% of patients) correlated with decreased GCLC protein, GCL activity and GSH content. Similar GSH system anomalies were observed in early psychosis patients. Such redox dysregulation combined with environmental stressors at specific developmental stages could underlie structural and functional connectivity anomalies. In pharmacological and knock-out (KO) models, GSH deficit induces anomalies analogous to those reported in patients. (a) morphology: spine density and GABA-parvalbumine immunoreactivity (PV-I) were decreased in anterior cingulate cortex. KO mice showed delayed cortical PV-I at PD10. This effect is exacerbated in mice with increased DA from PD5-10. KO mice exhibit cortical impairment in myelin and perineuronal net known to modulate PV connectivity. (b) physiology: In cultured neurons, NMDA response are depressed by D2 activation. In hippocampus, NMDA-dependent synaptic plasticity is impaired and kainate induced g-oscillations are reduced in parallel to PV-I. (c) cognition: low GSH models show increased sensitivity to stress, hyperactivity, abnormal object recognition, olfactory integration and social behavior. In a clinical study, GSH precursor N-acetyl cysteine (NAC) as add on therapy, improves the negative symptoms and decreases the side effects of antipsychotics. In an auditory oddball paradigm, NAC improves the mismatched negativity, an evoked potential related to pre-attention and to NMDA receptors function. In summary, clinical and experimental evidence converge to demonstrate that a genetically induced dysregulation of GSH synthesis combined with environmental insults in early development represent a major risk factor contributing to the development of schizophrenia Conclusion Based on these data, we proposed a model for PSIP1 promoter activity involving a complex interplay between yet undefined regulatory elements to modulate gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract : The term "muscle disuse" is often used to refer collectively to reductions in neuromuscular activity as observed with sedentary lifestyles, reduced weight bearing, cancer, chronic obstructive pulmonary disease, chronic heart failure, spinal cord injury, sarcopenia or exposure to microgravity (spaceflight). Muscle disuse atrophy, caused by accelerated proteolysis, is predominantly due to the activation of the ATP-dependent ubiquitin (Ub) proteasome pathway. The current advances in understanding the molecular factors contributing to the Ub-dependent proteolysis process have been made mostly in rodent models of human disease and denervation with few investigations performed directly in humans. Recently, in mice, the genes Atrogin-1 and MuRF1 have been designated as primary candidates in the control of muscle atrophy. Additionally, the decreased activity of the Akt/GSK-3ß and Akt/mTOR pathways has been associated with a reduction in protein synthesis and contributing to skeletal muscle atrophy. Therefore, it is now commonly accepted that skeletal muscle atrophy is the result of a decreased protein synthesis concomitant with an increase in protein degradation (Glass 2003). Atrogin-1 and MuRF1 are genes expressed exclusively in muscle. In mice, their expression has been shown to be directly correlated with the severity of atrophy. KO-mice experiments showed a major protection against atrophy when either of these genes were deleted. Skeletal muscle hypertrophy is an important function in normal postnatal development and in the adaptive response to exercise. It has been shown, in vitro, that the activation of phosphatidylinositol 3-kinase (PI-3K), by insulin growth factor 1 (IGF-1), stimulates myotubes hypertrophy by activating the downstream pathways, Akt/GSK-3ß and Akt/mTOR. It has also been demonstrated in mice, in vivo, that activation of these signalling pathways causes muscle hypertrophy. Moreover, the latter were recently proposed to also reduce muscle atrophy by inhibiting the FKHR mediated transcription of several muscle atrophy genes; Atrogin-1 and MuRF1. Therefore, these targets present new avenues for developing further the understanding of the molecular mechanisms involved in both skeletal muscle atrophy and hypertrophy. The present study proposed to investigate the regulation of the Akt/GSK-3ß and Akt/mTOR signalling pathways, as well as the expression levels of the "atrogenes", Atrogin-1 and MuRF1, in four human models of skeletal muscle atrophy. In the first study, we measured the regulation of the Akt signalling pathway after 8 weeks of both hypertrophy stimulating resistance training and atrophy stimulation de-training. As expected following resistance training, muscle hypertrophy and an increase in the phosphorylation status of the different members of the Akt pathway was observed. This was paralleled by a concomitant decrease in FOXO1 nuclear protein content. Surprisingly, exercise training also induced an increase in the, expression of the atrophy genes and proteins involved in the ATP-dependant ubiquitin-proteasome system. On the opposite, following the de-training period a muscle atrophy, relative to the post-training muscle size, was measured. At the same time, the phosphorylation levels of Akt and GSK-3ß were reduced while the amount of FOXO1 in the nucleus increased. After the atrophy phase, there was also a reduction in Atrogin-1 and MuRF1 contents. In this study, we demonstrate for the first time in healthy human skeletal muscle, that the regulation of Akt and its downstream targets GSK-3ß, mTOR and FOXO1 are associated with both thé skeletal muscle hypertrophy and atrophy processes. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of both upper and lower motor neurons, which leads to severe muscle weakness and atrophy. All measurements were performed in biopsies from 22 ALS patients and 16 healthy controls. ALS patients displayed an increase in Atrogin-1 mRNA and protein content which was associated with a decrease in Akt activity. However there was no difference in the mRNA and phospho-protein content of FOXO1, FOXO3a, p70S6K and GSK-3ß. The transcriptional regulation of human Atrogin-1 may be controlled by an Akt-mediated transcription factor other than FKHR or via an other signalling pathway. Chronic complete spinal cord injury (SCI) is associated with severe muscle atrophy which is linked to co-morbidity factors such as diabetes, obesity, lipid disorders and cardiovascular diseases. Molecular mechanisms associated with chronic complete SCI-related muscle atrophy are not well understood. The aim of the present study was to determine if there was an increase in catabolic signalling targets such as Atrogin-1, MuRF1, FOXO and myostatin, and decreases in anabolic signalling targets such as IGF, Akt, GSK-3ß, mTOR, 4E-BP1 and p-70S6K in chronic complete SCI patients. All measurements were performed in biopsies taken from 8 complete chronic SCI patients and 7 age matched healthy controls. In SCI patients when compared with controls, there was a significant reduction in mRNA levels of Atrogin1, MuRF1 and Myostatin. Protein levels for Atrogin-1, FOX01 and FOX03a were also reduced. IGF-1 and both phosphorylated GSK-3ß and 4E-BP1 were decreased; the latter two in an Akt and mTOR independent manner, respectively. Reductions in Atrogin-1, MuRF1, FOXO and myostatin suggest the existence of an internal mechanism aimed at reducing further loss of muscle proteins during chronic SCI. The downregulation of signalling proteins regulating anabolism such as IGF, GSK3ß and 4E-BP1 would reduce the ability to increase protein synthesis rates in this chronic state of muscle wasting. The molecular mechanisms controlling age-related skeletal muscle loss in humans are poorly understood. The present study aimed to investigate the regulation of several genes and proteins involved in the activation of key signalling pathways promoting muscle hypertrophy such as GH/STAT5/IGF, IGF/Akt/GSK-3ß/4E-BP1 and muscle atrophy such as TNFα/SOCS3 and Akt/FOXO/Atrogin-1 or MuRF1 in muscle biopsies from 13 young and 16 elderly men. In the older, as compared with the young subjects, TNFα and SOCS-3 were increased while growth hormone receptor protein (GHR) and IGF-1 mRNA were both decreased. Akt protein levels were increased however no change in phosphorylated Akt content was observed. GSK-3ß phosphorylation levels were increased while 4E-BP1 was not changed. Nuclear FKHR and FKHRL1 protein levels were decreased, with no changes in their atrophy target genes, Atrogin-1 and MuRF1. Myostatin mRNA and protein levels were significantly elevated. Human sarcopenia may be linked to a reduction in the activity or sensitivity of anabolic signalling proteins such as GHR, IGF and Akt. TNFα, SOCS-3 and myostatin are potential candidates influencing this anabolic perturbation. In conclusion our results support those obtained in rodent or ín vitro models, and demonstrate Akt plays a pivotal role in the control of muscle mass in humans. However, the Akt phosphorylation status was dependant upon the model of muscle atrophy as Akt phosphorylation was reduced in all atrophy models except for SCI. Additionally, the activity pattern of the downstream targets of Akt appears to be different upon the various human models. It seems that under particular conditions such as spinal cord injury or sarcopenia, .the regulation of GSK-3ß, 4eBP1 and p70S6K might be independent of Akt suggesting alternative signalling pathways in the control of these the anabolic response in human skeletal muscle. The regulation of Atrogin-1 and MuRF1 in some of our studies has been shown to be also independent of the well-described Akt/FOXO signalling pathway suggesting that other transcription factors may regulate human Atrogin-1 and MuRF1. These four different models of skeletal muscle atrophy and hypertrophy have brought a better understanding concerning the molecular mechanisms controlling skeletal muscle mass in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human estrogen receptor (hER) is a trans-acting regulatory protein composed of a series of discrete functional domains. We have microinjected an hER expression vector (HEO) into Xenopus oocyte nuclei and demonstrate, using Western blot assay, that the hER is synthesized. When nuclear extracts from oocytes were prepared and incubated in the presence of a 2.7 kb DNA fragment comprising the 5' end of the vitellogenin gene B2, formation of estrogen-dependent complexes could be visualized by electron microscopy over the estrogen responsive element (ERE). Of crucial importance is the observation that the complex formation is inhibited by the estrogen antagonist tamoxifen, is restored by the addition of the hormone and does not take place with extracts from control oocytes injected with the expression vector lacking the sequences encoding the receptor. The presence of the biologically active hER is confirmed in co-injection experiments, in which HEO is co-introduced with a CAT reporter gene under the control of a vitellogenin promoter containing or lacking the ERE. CAT assays and primer extensions analyses reveal that both the receptor and the ERE are essential for estrogen induced stimulation of transcription. The same approach was used to analyze selective hER mutants. We find that the DNA binding domain (region C) is essential for protein--DNA complex formation at the ERE but is not sufficient by itself to activate transcription from the reporter gene. In addition to region C, both the hormone binding (region E) and amino terminal (region A/B) domains are needed for an efficient transcription activation.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The class B scavenger receptor CD36 is a component of the pattern recognition receptors on monocytes that recognizes a variety of molecules. CD36 expression in monocytes depends on exposure to soluble mediators. We demonstrate here that CD36 expression is induced in human monocytes following exposure to IL-13, a Th2 cytokine, via the peroxisome proliferator-activated receptor (PPAR)gamma pathway. Induction of CD36 protein was paralleled by an increase in CD36 mRNA. The PPARgamma pathway was demonstrated using transfection of a PPARgamma expression plasmid into the murine macrophage cell line RAW264.7, expressing very low levels of PPARgamma, and in peritoneal macrophages from PPARgamma-conditional null mice. We also show that CD36 induction by IL-13 via PPARgamma is dependent on phospholipase A2 activation and that IL-13 induces the production of endogenous 15-deoxy-Delta12,14-prostaglandin J2, an endogenous PPARgamma ligand, and its nuclear localization in human monocytes. Finally, we demonstrate that CD36 and PPARgamma are involved in IL-13-mediated phagocytosis of Plasmodium falciparum-parasitized erythrocytes. These results reveal a novel role for PPARgamma in the alternative activation of monocytes by IL-13, suggesting that endogenous PPARgamma ligands, produced by phospholipase A2 activation, could contribute to the biochemical and cellular functions of CD36.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to evaluate the permissiveness of Nectomys squamipes to Schistosoma mansoni and the influence of the albino mice on the morphological aspects of adult worms derived from a population isolated from N. squamipes, the morphology of adult S. mansoni Sambon, 1907 male worms was studied using a digital image analyser (MOP VIDEOPLAN) and light microscopy. Their sources were as follows: (1) recovered from the wild rodent N. squamipes Brants naturally infected from Sumidouro, RJ, Brazil; (2) recovered from albino mice experimentally infected with the strain derived from N. squamipes; (3) recovered after the isolation of a strain derived from aboriginal human infections in Sumidouro. Worms recovered from N. squamipes (group 1) showed body lenght and distance between suckers significantly bigger than those of the specimens maintained in mice (groups 2 and 3). The number of tests in group 1 was statistically less than of groups 2 and 3. Group 2 strains which were maintained in mice, presented the lenght of the worms as the only significant different character. Data show that: (1) N. squamipes is a more suitable host for the development of S. mansoni when compared to the albino mice; (2) a strain of S. mansoni isolated from a natural host undergoes morphological changes after its passage in the white mouse.