937 resultados para Host Eggs
Resumo:
A method is described for the quantitative confirmation of 4,4'-dinitrocarbanilide (DNC), the marker residue for nicarbazin in chicken liver and eggs. The method is based on LC coupled to negative ion electrospray MS-MS of tissue extracts prepared by liquid-liquid extraction. The [M-H](-) ion at m/z 301 is monitored along with two transition ions at m/z 137 and 107 for DNC and the [M-H](-) ion at m/z 309 for the internal standard, d(8)-DNC. The method has been validated according to the new EU criteria for the analysis of veterinary drug residues at 100, 200 and 300 mug kg(-1) in liver and at 10, 30 and 100 mug kg(-1) in eggs. Difficulties concerning the application of the new analytical limits, namely the decision limit (CC) and the detection capability (CC) to the determination of DNC in both liver and eggs are discussed.
Resumo:
Burkholderia cenocepacia, a member of the Burkholderia cepacia complex, is an opportunistic pathogen that causes devastating infections in patients with cystic fibrosis. The ability of B. cenocepacia to survive within host cells could contribute significantly to its virulence in immunocompromised patients. In this study, we explored the mechanisms that enable B. cenocepacia to survive inside macrophages. We found that B. cenocepacia disrupts the actin cytoskeleton of infected macrophages, drastically altering their morphology. Submembranous actin undergoes depolymerization, leading to cell retraction. The bacteria perturb actin architecture by inactivating Rho family GTPases, particularly Rac1 and Cdc42. GTPase inactivation follows internalization of viable B. cenocepacia and compromises phagocyte function: macropinocytosis and phagocytosis are markedly inhibited, likely impairing the microbicidal and antigen-presenting capability of infected macrophages. The type VI secretion system is essential for the bacteria to elicit these changes. This is the first report demonstrating inactivation of Rho family GTPases by a member of the B. cepacia complex.
Resumo:
A fast screening method was developed to assess the pathogenicity of a diverse collection of environmental and clinical Burkholderia cepacia complex isolates in the nematode Caenorhabditis elegans. The method was validated by comparison with the standard slow-killing assay. We observed that the pathogenicity of B. cepacia complex isolates in C. elegans was strain-dependent but species-independent. The wide range of observed pathogenic phenotypes agrees with the high degree of phenotypic variation among species of the B. cepacia complex and suggests that the taxonomic classification of a given strain within the complex cannot predict pathogenicity.
Resumo:
Burkholderia are microorganisms that have a unique ability to adapt and survive in many different environments. They can also serve as biopesticides and be used for the biodegradation of organic compounds. Usually harmless while living in the soil, these bacteria are opportunistic pathogens of plants and immunocompromised patients, and occasionally infect healthy individuals. Some of the species in this genus can also be utilised as biological weapons. They all possess very large genomes and have two or more circular chromosomes. Their survival and persistence, not only in the environment but also in host cells, offers a remarkable example of bacterial adaptation.
Resumo:
Nucleotide-binding oligomerization domain protein 1 (NOD1) belongs to a family that includes multiple members with NOD and leucine-rich repeats in vertebrates and plants. NOD1 has been suggested to have a role in innate immune responses, but the mechanism involved remains unknown. Here we report that NOD1 mediates the recognition of peptidoglycan derived primarily from Gram-negative bacteria. Biochemical and functional analyses using highly purified and synthetic compounds indicate that the core structure recognized by NOD1 is a dipeptide, gamma-D-glutamyl-meso-diaminopimelic acid (iE-DAP). Murine macrophages deficient in NOD1 did not secrete cytokines in response to synthetic iE-DAP and did not prime the lipopolysaccharide response. Thus, NOD1 mediates selective recognition of bacteria through detection of iE-DAP-containing peptidoglycan.