985 resultados para High resolution tools
Resumo:
We found a significant positive correlation between local summer air temperature (May-September) and the annual sediment mass accumulation rate (MAR) in Lake Silvaplana (46°N, 9°E, 1800 m a.s.l.) during the twentieth century (r = 0.69, p < 0.001 for decadal smoothed series). Sediment trap data (2001-2005) confirm this relation with exceptionally high particle yields during the hottest summer of the last 140 years in 2003. On this base we developed a decadal-scale summer temperature reconstruction back to AD 1580. Surprisingly, the comparison of our reconstruction with two other independent regional summer temperature reconstructions (based on tree-rings and documentary data) revealed a significant negative correlation for the pre-1900 data (ie, late ‘Little Ice Age’). This demonstrates that the correlation between MAR and summer temperature is not stable in time and the actualistic principle does not apply in this case. We suggest that different climatic regimes (modern/‘Little Ice Age’) lead to changing state conditions in the catchment and thus to considerably different sediment transport mechanisms. Therefore, we calibrated our MAR data with gridded early instrumental temperature series from AD 1760-1880 (r = -0.48, p < 0.01 for decadal smoothed series) to properly reconstruct the late LIA climatic conditions. We found exceptionally low temperatures between AD 1580 and 1610 (0.75°C below twentieth-century mean) and during the late Maunder Minimum from AD 1680 to 1710 (0.5°C below twentieth-century mean). In general, summer temperatures did not experience major negative departures from the twentieth-century mean during the late ‘Little Ice Age’. This compares well with the two existing independent regional reconstructions suggesting that the LIA in the Alps was mainly a phenomenon of the cold season.
Resumo:
Dental identification is the most valuable method to identify human remains in single cases with major postmortem alterations as well as in mass casualties because of its practicability and demanding reliability. Computed tomography (CT) has been investigated as a supportive tool for forensic identification and has proven to be valuable. It can also scan the dentition of a deceased within minutes. In the present study, we investigated currently used restorative materials using ultra-high-resolution dual-source CT and the extended CT scale for the purpose of a color-encoded, in scale, and artifact-free visualization in 3D volume rendering. In 122 human molars, 220 cavities with 2-, 3-, 4- and 5-mm diameter were prepared. With presently used filling materials (different composites, temporary filling materials, ceramic, and liner), these cavities were restored in six teeth for each material and cavity size (exception amalgam n = 1). The teeth were CT scanned and images reconstructed using an extended CT scale. Filling materials were analyzed in terms of resulting Hounsfield units (HU) and filling size representation within the images. Varying restorative materials showed distinctively differing radiopacities allowing for CT-data-based discrimination. Particularly, ceramic and composite fillings could be differentiated. The HU values were used to generate an updated volume-rendering preset for postmortem extended CT scale data of the dentition to easily visualize the position of restorations, the shape (in scale), and the material used which is color encoded in 3D. The results provide the scientific background for the application of 3D volume rendering to visualize the human dentition for forensic identification purposes.
Resumo:
OBJECTIVE: The objective of this study was to evaluate the feasibility and reproducibility of high-resolution magnetic resonance imaging (MRI) and quantitative T2 mapping of the talocrural cartilage within a clinically applicable scan time using a new dedicated ankle coil and high-field MRI. MATERIALS AND METHODS: Ten healthy volunteers (mean age 32.4 years) underwent MRI of the ankle. As morphological sequences, proton density fat-suppressed turbo spin echo (PD-FS-TSE), as a reference, was compared with 3D true fast imaging with steady-state precession (TrueFISP). Furthermore, biochemical quantitative T2 imaging was prepared using a multi-echo spin-echo T2 approach. Data analysis was performed three times each by three different observers on sagittal slices, planned on the isotropic 3D-TrueFISP; as a morphological parameter, cartilage thickness was assessed and for T2 relaxation times, region-of-interest (ROI) evaluation was done. Reproducibility was determined as a coefficient of variation (CV) for each volunteer; averaged as root mean square (RMSA) given as a percentage; statistical evaluation was done using analysis of variance. RESULTS: Cartilage thickness of the talocrural joint showed significantly higher values for the 3D-TrueFISP (ranging from 1.07 to 1.14 mm) compared with the PD-FS-TSE (ranging from 0.74 to 0.99 mm); however, both morphological sequences showed comparable good results with RMSA of 7.1 to 8.5%. Regarding quantitative T2 mapping, measurements showed T2 relaxation times of about 54 ms with an excellent reproducibility (RMSA) ranging from 3.2 to 4.7%. CONCLUSION: In our study the assessment of cartilage thickness and T2 relaxation times could be performed with high reproducibility in a clinically realizable scan time, demonstrating new possibilities for further investigations into patient groups.
Resumo:
Lava flow modeling can be a powerful tool in hazard assessments; however, the ability to produce accurate models is usually limited by a lack of high resolution, up-to-date Digital Elevation Models (DEMs). This is especially obvious in places such as Kilauea Volcano (Hawaii), where active lava flows frequently alter the terrain. In this study, we use a new technique to create high resolution DEMs on Kilauea using synthetic aperture radar (SAR) data from the TanDEM-X (TDX) satellite. We convert raw TDX SAR data into a geocoded DEM using GAMMA software [Werner et al., 2000]. This process can be completed in several hours and permits creation of updated DEMs as soon as new TDX data are available. To test the DEMs, we use the Harris and Rowland [2001] FLOWGO lava flow model combined with the Favalli et al. [2005] DOWNFLOW model to simulate the 3-15 August 2011 eruption on Kilauea's East Rift Zone. Results were compared with simulations using the older, lower resolution 2000 SRTM DEM of Hawaii. Effusion rates used in the model are derived from MODIS thermal infrared satellite imagery. FLOWGO simulations using the TDX DEM produced a single flow line that matched the August 2011 flow almost perfectly, but could not recreate the entire flow field due to the relatively high DEM noise level. The issues with short model flow lengths can be resolved by filtering noise from the DEM. Model simulations using the outdated SRTM DEM produced a flow field that followed a different trajectory to that observed. Numerous lava flows have been emplaced at Kilauea since the creation of the SRTM DEM, leading the model to project flow lines in areas that have since been covered by fresh lava flows. These results show that DEMs can quickly become outdated on active volcanoes, but our new technique offers the potential to produce accurate, updated DEMs for modeling lava flow hazards.
Resumo:
Cationic and anionic electrophoretic mobilization for focusing of hemoglobins (Hb's) in the presence of 100 carrier ampholytes covering a pI range of 6.00-7.98 was studied by computer simulation at a constant current density of 300 A/m(2). Electropherograms that would be produced by whole column imaging and by single detectors placed at different locations along the focusing column are presented. Upon mobilization, peak heights of the Hb zones decrease, but the zones retain a relatively sharp constant profile and are migrating at a constant velocity. A further peak decrease occurs during readjustment at the locations of the original buffer/column interfaces, indicating that detection sensitivity is the lowest at these locations. An anionic carrier ampholyte mobility smaller than that of its cationic species produces a cathodic drift which is smaller than the transport rate used for electrophoretic mobilization. Compared to the case with equal mobilities of carrier ampholyte species, a small increase (decrease) is predicted for the cationic (anionic) mobilization rate within the focusing column. Simulation data suggest that electrophoretic mobilization after focusing and focusing with concurrent electrophoretic mobilization are comparable isotachophoretic processes that occur when there is an uninterrupted flux of an ion through the focusing column. Cathodic drift caused by unequal mobilities of the species of carrier ampholytes, electrophoretic mobilization, and decomposition occurring at the pH gradient edges are related electrophoretic processes.
Resumo:
The impact of the systematic variation of either DeltapK(a) or mobility of 140 biprotic carrier ampholytes on the conductivity profile of a pH 3-10 gradient was studied by dynamic computer simulation. A configuration with the greatest DeltapK(a) in the pH 6-7 range and uniform mobilities produced a conductivity profile consistent with that which is experimentally observed. A similar result was observed when the neutral (pI = 7) ampholyte is assigned the lowest mobility and mobilities of the other carriers are systematically increased as their pI's recede from 7. When equal DeltapK(a) values and mobilities are assigned to all ampholytes a conductivity plateau in the pH 5-9 region is produced which does not reflect what is seen experimentally. The variation in DeltapK(a) values is considered to most accurately reflect the electrochemical parameters of commercially available mixtures of carrier ampholytes. Simulations with unequal mobilities of the cationic and anionic species of the carrier ampholytes show either cathodic (greater mobility of the cationic species) or anodic (greater mobility of the anionic species) drifts of the pH gradient. The simulated cationic drifts compare well to those observed experimentally in a capillary in which the focusing of three dyes was followed by whole column optical imaging. The cathodic drift flattens the acidic portion of the gradient and steepens the basic part. This phenomenon is an additional argument against the notion that focused zones of carrier ampholytes have no electrophoretic flux.
Resumo:
For improving the identification of potential heparin impurities such as oversulfated chondroitin sulfate (OSCS) the standard 2D (1)H-(1)H NMR NOESY was applied. Taking advantage of spin diffusion and adjusting the experimental parameters accordingly additional contaminant-specific signals of the corresponding sugar ring protons can easily be detected. These are usually hidden by the more intense heparin signals. Compared to the current 1D (1)H procedure proposed for screening commercial unfractionated heparin samples and focusing on the contaminants acetyl signals more informative and unique fingerprints may be obtained. Correspondingly measured (1)H fingerprints of a few potential impurities are given and their identification in two contaminated commercial heparin samples is demonstrated. The proposed 2D NOESY method is not intended to replace the current 1D method for detecting and quantifying heparin impurities but may be regarded as a valuable supplement for an improved and more reliable identification of these contaminants.