874 resultados para Hellberg, Nils


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We measured oxygen isotopes and Mg/Ca ratios in the surface-dwelling planktonic foraminifer Globigerinoides ruber (white s.s.) and the thermocline dweller Pulleniatina obliquiloculata to investigate upper ocean spatial variability in the Indo-Pacific Warm Pool (IPWP). We focused on three critical time intervals: the Last Glacial Maximum (LGM; 18-21.5 ka), the early Holocene (8-9 ka), and the late Holocene (0-2 ka). Our records from 24 stations in the South China Sea, Timor Sea, Indonesian seas, and western Pacific indicate overall dry and cool conditions in the IPWP during the LGM with a low thermal gradient between surface and thermocline waters. During the early Holocene, sea surface temperatures increased by ~3°C over the entire region, indicating intensification of the IPWP. However, in the eastern Indian Ocean (Timor Sea), the thermocline gradually shoaled from the LGM to early Holocene, reflecting intensification of the subsurface Indonesian Throughflow (ITF). Increased surface salinity in the South China Sea during the Holocene appears related to northward displacement of the monsoonal rain belt over the Asian continent together with enhanced influx of saltier Pacific surface water through the Luzon Strait and freshwater export through the Java Sea. Opening of the freshwater portal through the Java Sea in the early Holocene led to a change in the vertical structure of the ITF from surface- to thermocline-dominated flow and to substantial freshening of Timor Sea thermocline waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present high-resolution (2-3 kyr) benthic foraminiferal stable isotopes in a continuous, well-preserved sedimentary archive from the West Pacific Ocean (Ocean Drilling Program Site 1146), which track climate evolution in unprecedented resolution over the period 12.9 to 8.4 Ma. We developed an astronomically tuned chronology over this interval and integrated our new records with published isotope data from the same location to reconstruct long-term climate and ocean circulation development between 16.4 and 8.4 Ma. This extended perspective reveals that the long eccentricity (400 kyr) cycle is prominently encoded in the d13C signal over most of the record, reflecting long-term fluctuations in the carbon cycle. The d18O signal closely follows variations in short eccentricity (100 kyr) and obliquity (41 kyr). In particular, the obliquity cycle is prominent from ~14.6 to 14.1 Ma and from ~9.8 to 9.2 Ma, when high-amplitude variability in obliquity is congruent with low-amplitude variability in short eccentricity. The d18O curve is additionally characterized by a series of incremental steps at ~14.6, 13.9, 13.1, 10.6, 9.9, and 9.0 Ma, which we attribute to progressive deep water cooling and/or glaciation episodes following the end of the Miocene climatic optimum. On the basis of d18O amplitudes, we find that climate variability decreased substantially after ~13 Ma, except for a remarkable warming episode at ~10.8-10.7 Ma at peak insolation during eccentricity maxima (100 and 400 kyr). This transient warming, associated with a massive negative carbon isotope shift, is reminiscent of intense global warming events at eccentricity maxima during the Miocene climatic optimum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orbital forcing does not only exert direct insolation effects, but also alters climate indirectly through feedback mechanisms that modify atmosphere and ocean dynamics and meridional heat and moisture transfers. We investigate the regional effects of these changes by detailed analysis of atmosphere and ocean circulation and heat transports in a coupled atmosphere-ocean-sea ice-biosphere general circulation model (ECHAM5/JSBACH/MPI-OM). We perform long term quasi equilibrium simulations under pre-industrial, mid-Holocene (6000 years before present - yBP), and Eemian (125 000 yBP) orbital boundary conditions. Compared to pre-industrial climate, Eemian and Holocene temperatures show generally warmer conditions at higher and cooler conditions at lower latitudes. Changes in sea-ice cover, ocean heat transports, and atmospheric circulation patterns lead to pronounced regional heterogeneity. Over Europe, the warming is most pronounced over the north-eastern part in accordance with recent reconstructions for the Holocene. We attribute this warming to enhanced ocean circulation in the Nordic Seas and enhanced ocean-atmosphere heat flux over the Barents Shelf in conduction with retreat of sea ice and intensified winter storm tracks over northern Europe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcareous nannoplankton assemblages and benthic d18O isotopes of Pliocene deep-sea sediments of ODP site 1172 (East of Tasmania) have been studied to improve our knowledge of the Southern Ocean paleoceanography. Our study site is located just north of the Subtropical Front (STF), an ideal setting to monitor migrations of the STF during our study period, between 3.45 and 2.45 Ma. The assemblage identified at ODP site 1172 has been interpreted as characteristic for the transitional zone water mass, located south of the STF, based on: (i) the low abundances (< 1%) of subtropical taxa, (ii) relatively high percentages of Coccolithus pelagicus, a subpolar type species, (iii) abundances from 2-10% of Calcidiscus leptoporus, a species that frequently inhabits the zone south of the STF and (iv) the high abundances of small Noelaerhabdaceae which at present dominates the zone south of the STF. Across our interval the calcareous nannoplankton manifests glacial-interglacial variability. We have identified cold events, characterized by high abundances of C. pelagicus which coincide with glacial periods, except during G7. After 3.1 Ma cold events are more frequent, in concordance with global cooling trends. Around 2.75 Ma, the interglacial stage G7 is characterized by anomalous low temperatures which most likely are linked to definite closure of the Central American Seaway (CAS), an event that is believed to have had global consequences. A gradual increase of very small Reticulofenestra across our section marks a significant trend in the small Noelaerhabdaceae species group and has been linked to a general enhanced mixing of the water column in agreement with previous studies. It is suggested that a rapid decline of small Gephyrocapsa after isotopic stage G7 might be related to the cooling observed in our study site after the closure of the CAS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isotopic composition of surface seawater is widely used to infer past changes in sea surface salinity using paired foraminiferal Mg/Ca and d18O from marine sediments. At low latitudes, paleosalinity reconstructions using this method have largely been used to document changes in the hydrological cycle. This method usually assumes that the modern seawater d18O (d18Osw)/salinity relationship remained constant through time. Modelling studies have shown that such assumptions may not be valid because large-scale atmospheric circulation patterns linked to global climate changes can alter the seawater d18Osw/salinity relationship locally. Such processes have not been evidenced by paleo-data so far because there is presently no way to reconstruct past changes in the seawater d18Osw/salinity relationship. We have addressed this issue by applying a multi-proxy salinity reconstruction from a marine sediment core collected in the Gulf of Guinea. We measured hydrogen isotopes in C37:2 alkenones (dDa) to estimate changes in seawater dD. We find a smooth, long-term increase of ~10 per mil in dDa between 10 and 3 kyr BP, followed by a rapid decrease of ~10 per mil in dDa between 3 kyr BP and core top to values slightly lighter than during the early Holocene. Those features are inconsistent with published salinity estimations based on d18Osw and foraminiferal Ba/Ca, as well as nearby continental rainfall history derived from pollen analysis. We combined dDa and d18Osw values to reconstruct a Holocene record of salinity and compared it to a Ba/Ca-derived salinity record from the same sedimentary sequence. This combined method provides salinity trends that are in better agreement with both the Ba/Ca-derived salinity and the regional precipitation changes as inferred from pollen records. Our results illustrate that changes in atmospheric circulation can trigger changes in precipitation isotopes in a counter-intuitive manner that ultimately impacts surface salinity estimates based on seawater isotopic values. Our data suggest that the trends in Holocene rainfall isotopic values at low latitudes may not uniquely result from changes in local precipitation associated with the amount effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toxaphene contamination of minke whales (Balaenoptera acutorostrata) from North Atlantic waters was examined for the first time. Total toxaphene and SumCHB (sum of 11 chlorobornanes) concentrations in blubber samples ranged from 170 ± 110 and 41 ± 39 ng/g lipid weight (l.w.) for female minke whales from southeastern Greenland to 5800 ± 4100 and 1100 ± 780 ng/g l.w. for males from the North Sea, respectively. Very large variations in toxaphene concentrations among sampling areas were observed suggesting a spatial segregation of minke whales. However, much of the apparent geographical discrimination was explained by the seasonal fluctuation of animal fat mass. Patterns of CHBs in males revealed that recalcitrant CHBs were in higher proportions in animals from the more easterly areas than in animals from the more westerly areas. This trend may be influenced by the predominance of the US, over the European, input of toxaphene to North Atlantic waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithology describes the geochemical, mineralogical, and physical properties of rocks. It plays a key role in many processes at the Earth surface, especially the fluxes of matter to soils, ecosystems, rivers, and oceans. Understanding these processes at the global scale requires a high resolution description of lithology. A new high resolution global lithological map (GLiM) was assembled from existing regional geological maps translated into lithological information with the help of regional literature. The GLiM represents the rock types of the Earth surface using 1,235,400 polygons. The lithological classification consists of three levels. The first level contains 16 lithological classes comparable to previously applied definitions in global lithological maps. The additional two levels contain 12 and 14 subclasses, respectively, which describe more specific rock attributes. According to the GLiM, the Earth is covered by 64 % sediments (a third of which is carbonates), 13 % metamorphics, 7 % plutonics, and 6 % volcanics, and 10% are covered by water or ice. The high resolution of the GLiM allows observation of regional lithological distributions which often vary from the global average. The GLiM enables regional analysis of Earth surface processes at global scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used hyperspectral imaging to study short-term effects of bioturbation by lugworms (Arenicola marina) on the surficial biomass of microphytobenthos (MPB) in permeable marine sediments. Within days to weeks after the addition of a lugworm to a homogenized and recomposed sediment, the average surficial MPB biomass and its spatial heterogeneity were, respectively, 150 - 250% and 280% higher than in sediments without lugworms. The surficial sediment area impacted by a single medium-sized lugworm (~4 g wet weight) over this time-scale was at least 340 cm**2. While sediment reworking was the primary cause of the increased spatial heterogeneity, experiments with lugworm-mimics together with modeling showed that bioadvective porewater transport from depth to the sediment surface, as induced by the lugworm ventilating its burrow, was the main cause of the increased surficial MPB biomass. Although direct measurements of nutrient fluxes are lacking, our present data show that enhanced advective supply of nutrients from deeper sediment layers induced by faunal ventilation is an important mechanism that fuels high primary productivity at the surface of permeable sediments even though these systems are generally characterized by low standing stocks of nutrients and organic material.