975 resultados para Heat Flux Measurement
Resumo:
As part of the Coupled Model Intercomparison Project, integrations with a common design have been undertaken with eleven different climate models to compare the response of the Atlantic thermohaline circulation ( THC) to time-dependent climate change caused by increasing atmospheric CO2 concentration. Over 140 years, during which the CO2 concentration quadruples, the circulation strength declines gradually in all models, by between 10 and 50%. No model shows a rapid or complete collapse, despite the fairly rapid increase and high final concentration of CO2. The models having the strongest overturning in the control climate tend to show the largest THC reductions. In all models, the THC weakening is caused more by changes in surface heat flux than by changes in surface water flux. No model shows a cooling anywhere, because the greenhouse warming is dominant.
Resumo:
To solve problems in polymer fluid dynamics, one needs the equation of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (1) one can write a continuum expression for the stress tensor in terms of kinematic tensors, or (2) one can select a molecular model that represents the polymer molecule, and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. In this review, we restrict the discussion primarily to the simplest stress tensor expressions or “constitutive equations” containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. The virtue of studying the simplest models is that we can discover some general notions as to which types of empiricisms or which types of molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows. These are the flows that are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.
Resumo:
Trabalho de projecto de mestrado, Engenharia da Energia e Ambiente, Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
Stable isotope, foraminifera and ice rafted detritus (IRD) records covering the last interglacial (the Eemian) from 7 sediment cores in a transect from the Norwegian to the Greenland Sea are presented. The percentages of Neogloboquadrina pachyderma (s.) and Globigerina quinqueloba, foraminiferal content, and to some extent planktonic stable isotope records, demonstrate marked, regional changes in surface water conditions. Importantly, the variability in the abundances of subpolar foraminifera and foraminiferal content are not coherent, implying that these two types of proxies fluctuated independently of each other and most likely reflect changes in sea surface temperature and surface water carbonate productivity, respectively. Paleoceanographic reconstructions demonstrate significant movements of the oceanographic fronts. At the warmest periods, the Arctic front was located far west of the present-day location, at least within the Iceland Sea region. At 126-125 ka, this was most probably due to a stronger or more westerly located Norwegian current. Within the later warm intervals, higher heat flux to the western part of the basin reflects a combination of a stronger Irminger current and/or a weaker east Greenland current. During the main cold spell at ~124 ka, a diffuse Arctic front had a more southeasterly location than today, and intrusion of Atlantic surface waters was probably limited to a narrow corridor in the Eastern Norwegian Sea. A general correspondence between minima in sea surface temperatures and light benthic delta18O may indicate enhanced influx of freshwater to the basin within the cold events. At least in the Norwegian Sea, we find some evidence that the changes in surface water conditions are associated with changes in deep water ventilation. The majority of the fluctuations may be related to occasional breakdown or reduction of the thermohaline circulation within the Nordic seas. In the earliest Eemian, this could result from meltwater forcing. During the remaining part of the last interglacial the fine balance between temperature and salinity, which the deep water formation is depending on, may have been disturbed by periodic increases in fresh water supply or variable influx of warm Atlantic surface waters.
Resumo:
Variations in the strength of the North Atlantic Ocean thermohaline circulation have been linked to rapid climate changes during the last glacial cycle through oscillations in North Atlantic Deep Water formation and northward oceanic heat flux. The strength of the thermohaline circulation depends on the supply of warm, salty water to the North Atlantic, which, after losing heat to the atmosphere, produces the dense water masses that sink to great depths and circulate back south. Here we analyse two Caribbean Sea sediment cores, combining Mg/Ca palaeothermometry with measurements of oxygen isotopes in foraminiferal calcite in order to reconstruct tropical Atlantic surface salinity during the last glacial cycle. We find that Caribbean salinity oscillated between saltier conditions during the cold oxygen isotope stages 2, 4 and 6, and lower salinities during the warm stages 3 and 5, covarying with the strength of North Atlantic Deep Water formation. At the initiation of the Bølling/Allerød warm interval, Caribbean surface salinity decreased abruptly, suggesting that the advection of salty tropical waters into the North Atlantic amplified thermohaline circulation and contributed to high-latitude warming.
Resumo:
The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06