1000 resultados para Harvest Technology
Resumo:
Fluid bed granulation is a key pharmaceutical process which improves many of the powder properties for tablet compression. Dry mixing, wetting and drying phases are included in the fluid bed granulation process. Granules of high quality can be obtained by understanding and controlling the critical process parameters by timely measurements. Physical process measurements and particle size data of a fluid bed granulator that are analysed in an integrated manner are included in process analytical technologies (PAT). Recent regulatory guidelines strongly encourage the pharmaceutical industry to apply scientific and risk management approaches to the development of a product and its manufacturing process. The aim of this study was to utilise PAT tools to increase the process understanding of fluid bed granulation and drying. Inlet air humidity levels and granulation liquid feed affect powder moisture during fluid bed granulation. Moisture influences on many process, granule and tablet qualities. The approach in this thesis was to identify sources of variation that are mainly related to moisture. The aim was to determine correlations and relationships, and utilise the PAT and design space concepts for the fluid bed granulation and drying. Monitoring the material behaviour in a fluidised bed has traditionally relied on the observational ability and experience of an operator. There has been a lack of good criteria for characterising material behaviour during spraying and drying phases, even though the entire performance of a process and end product quality are dependent on it. The granules were produced in an instrumented bench-scale Glatt WSG5 fluid bed granulator. The effect of inlet air humidity and granulation liquid feed on the temperature measurements at different locations of a fluid bed granulator system were determined. This revealed dynamic changes in the measurements and enabled finding the most optimal sites for process control. The moisture originating from the granulation liquid and inlet air affected the temperature of the mass and pressure difference over granules. Moreover, the effects of inlet air humidity and granulation liquid feed rate on granule size were evaluated and compensatory techniques used to optimize particle size. Various end-point indication techniques of drying were compared. The ∆T method, which is based on thermodynamic principles, eliminated the effects of humidity variations and resulted in the most precise estimation of the drying end-point. The influence of fluidisation behaviour on drying end-point detection was determined. The feasibility of the ∆T method and thus the similarities of end-point moisture contents were found to be dependent on the variation in fluidisation between manufacturing batches. A novel parameter that describes behaviour of material in a fluid bed was developed. Flow rate of the process air and turbine fan speed were used to calculate this parameter and it was compared to the fluidisation behaviour and the particle size results. The design space process trajectories for smooth fluidisation based on the fluidisation parameters were determined. With this design space it is possible to avoid excessive fluidisation and improper fluidisation and bed collapse. Furthermore, various process phenomena and failure modes were observed with the in-line particle size analyser. Both rapid increase and a decrease in granule size could be monitored in a timely manner. The fluidisation parameter and the pressure difference over filters were also discovered to express particle size when the granules had been formed. The various physical parameters evaluated in this thesis give valuable information of fluid bed process performance and increase the process understanding.
Resumo:
There is a need for better understanding of the processes and new ideas to develop traditional pharmaceutical powder manufacturing procedures. Process analytical technology (PAT) has been developed to improve understanding of the processes and establish methods to monitor and control processes. The interest is in maintaining and even improving the whole manufacturing process and the final products at real-time. Process understanding can be a foundation for innovation and continuous improvement in pharmaceutical development and manufacturing. New methods are craved for to increase the quality and safety of the final products faster and more efficiently than ever before. The real-time process monitoring demands tools, which enable fast and noninvasive measurements with sufficient accuracy. Traditional quality control methods have been laborious and time consuming and they are performed off line i.e. the analysis has been removed from process area. Vibrational spectroscopic methods are responding this challenge and their utilisation have increased a lot during the past few years. In addition, other methods such as colour analysis can be utilised in noninvasive real-time process monitoring. In this study three pharmaceutical processes were investigated: drying, mixing and tabletting. In addition tablet properties were evaluated. Real-time monitoring was performed with NIR and Raman spectroscopies, colour analysis, particle size analysis and compression data during tabletting was evaluated using mathematical modelling. These methods were suitable for real-time monitoring of pharmaceutical unit operations and increase the knowledge of the critical parameters in the processes and the phenomena occurring during operations. They can improve our process understanding and therefore, finally, enhance the quality of final products.
Resumo:
This study extends understanding of consumers' decisions to adopt transformative services delivered via technology. It incorporates competitive effects into the model of goal-directed behavior which, in keeping with the majority of consumer decision making models, neglects to explicitly account for competition. A goal-level operationalization of competition, incorporating both direct and indirect competition, is proposed. A national web-based survey collected data from 431 respondents about their decisions to adopt mental health services delivered via mobile phone. The findings show that the extent to which consumers perceived using these transformative services to be more instrumental to achieving their goals than competition had the greatest impact on their adoption decisions. This finding builds on the limited empirical evidence for the inclusion of competitive effects to more fully explain consumers' decisions to adopt technology-based and other services. It also provides support for a broader operationalization of competition with respect to consumers' personal goals.
Resumo:
The article describes a generalized estimating equations approach that was used to investigate the impact of technology on vessel performance in a trawl fishery during 1988-96, while accounting for spatial and temporal correlations in the catch-effort data. Robust estimation of parameters in the presence of several levels of clustering depended more on the choice of cluster definition than on the choice of correlation structure within the cluster. Models with smaller cluster sizes produced stable results, while models with larger cluster sizes, that may have had complex within-cluster correlation structures and that had within-cluster covariates, produced estimates sensitive to the correlation structure. The preferred model arising from this dataset assumed that catches from a vessel were correlated in the same years and the same areas, but independent in different years and areas. The model that assumed catches from a vessel were correlated in all years and areas, equivalent to a random effects term for vessel, produced spurious results. This was an unexpected finding that highlighted the need to adopt a systematic strategy for modelling. The article proposes a modelling strategy of selecting the best cluster definition first, and the working correlation structure (within clusters) second. The article discusses the selection and interpretation of the model in the light of background knowledge of the data and utility of the model, and the potential for this modelling approach to apply in similar statistical situations.
Resumo:
Changes in chemical composition, physical and sensory characteristics were followed in two pecan cultivars Wichita and Western Schley harvested from a commercial orchard at Gatton in Queensland seven times during 1996.Testa colour of both pecan cultivars darkened and opalescence decreased as the nuts matured. Bitterness of Western Schley pecans decreased with maturity. Colour of shuck, shell and kernel of both cultivars developed as the nuts matured. Wichita pecans were larger than Western Schley at all harvest times. Both nut-in-shell and kernel moisture decreased with maturity, whereas oil and sucrose contents increased. Both pecan cultivars had reached advanced maturation by the first harvest on March 18.
Resumo:
Fluidised bed-heat pump drying technology offers distinctive advantages over the existing drying technology employed in the Australian food industry. However, as is the case with many other examples of innovations that have had clear relative advantages, the rates of adoption and diffusion of this technology have been very slow. "Why does this happen?" is the theme of this research study that has been undertaken with an objective to analyse a range of issues related to the market acceptance of technological innovations. The research methodology included the development of an integrated conceptual model based on an extensive review of literature in the areas of innovation diffusion, technology transfer and industrial marketing. Three major determinants associated with the market acceptance of innovations were identified as the characteristics of the innovation, adopter information processing capability and the influence of the innovation supplier on the adoption process. This was followed by a study involving more than 30 small and medium enterprises identified as potential adopters of fluidised bed-heat pump drying technology in the Australian food industry. The findings revealed that judgment was the key evaluation strategy employed by potential adopters in the particular industry sector. Further, it was evidenced that the innovations were evaluated against a predetermined criteria covering a range of aspects with emphasis on a selected set of attributes of the innovation. Implication of these findings on the commercialisation of fluidised bed-heat pump drying technology was established, and a series of recommendations was made to the innovation supplier (DPI/FT) enabling it to develop an effective commercialisation strategy.
Resumo:
Acoustic impedance of a termination, or of a passive subsystem, needs to be measured not only for acoustic lining materials but also in the exhaust systems of flow machinery, where mean flow introduces peculiar problems. Out of the various methods of measurement of acoustic impedance, the discrete frequency, steady state, impedance tube method [1] is most reliable, though time consuming, and requires no special instrumentation.
Resumo:
Different degrees of severity of threshing were imposed during combine-harvesting of seed of Gatton panic, a cultivar of Panicum maximum , to determine effects of degree of threshing damage on subsequent properties of seed. Threshing cylinder peripheral speeds and concave clearances covering the normal range employed commercially were varied experimentally in the harvest of 2 crops grown in north Queensland. Harvested seed was dried and cleaned, then stored under ambient conditions. The extent of physical damage was measured, and samples were tested at intervals for viability, germination, dormancy and seedling emergence from soil in a glasshouse and in the field over the 2 seasons following harvest. Physical damage increased as peripheral rotor speed rose and (though less markedly) as concave clearance was reduced. As the level of damage increased, viability was progressively reduced, life expectancy was shortened, and dormancy was broken. When the consequences were measured as seedling emergence from soil, the adverse effects on viability tended to cancel out the benefits of dormancy-breaking, leaving few net differences attributable to the degree of threshing severity. We concluded that there would be no value in trying to manipulate the quality of seed produced for normal commercial use through choice of cylinder settings, but that deliberate light or heavy threshing could benefit special-purpose seed, destined, respectively, for long-term storage or immediate use.
Resumo:
The development of innovative methods of stock assessment is a priority for State and Commonwealth fisheries agencies. It is driven by the need to facilitate sustainable exploitation of naturally occurring fisheries resources for the current and future economic, social and environmental well being of Australia. This project was initiated in this context and took advantage of considerable recent achievements in genomics that are shaping our comprehension of the DNA of humans and animals. The basic idea behind this project was that genetic estimates of effective population size, which can be made from empirical measurements of genetic drift, were equivalent to estimates of the successful number of spawners that is an important parameter in process of fisheries stock assessment. The broad objectives of this study were to 1. Critically evaluate a variety of mathematical methods of calculating effective spawner numbers (Ne) by a. conducting comprehensive computer simulations, and by b. analysis of empirical data collected from the Moreton Bay population of tiger prawns (P. esculentus). 2. Lay the groundwork for the application of the technology in the northern prawn fishery (NPF). 3. Produce software for the calculation of Ne, and to make it widely available. The project pulled together a range of mathematical models for estimating current effective population size from diverse sources. Some of them had been recently implemented with the latest statistical methods (eg. Bayesian framework Berthier, Beaumont et al. 2002), while others had lower profiles (eg. Pudovkin, Zaykin et al. 1996; Rousset and Raymond 1995). Computer code and later software with a user-friendly interface (NeEstimator) was produced to implement the methods. This was used as a basis for simulation experiments to evaluate the performance of the methods with an individual-based model of a prawn population. Following the guidelines suggested by computer simulations, the tiger prawn population in Moreton Bay (south-east Queensland) was sampled for genetic analysis with eight microsatellite loci in three successive spring spawning seasons in 2001, 2002 and 2003. As predicted by the simulations, the estimates had non-infinite upper confidence limits, which is a major achievement for the application of the method to a naturally-occurring, short generation, highly fecund invertebrate species. The genetic estimate of the number of successful spawners was around 1000 individuals in two consecutive years. This contrasts with about 500,000 prawns participating in spawning. It is not possible to distinguish successful from non-successful spawners so we suggest a high level of protection for the entire spawning population. We interpret the difference in numbers between successful and non-successful spawners as a large variation in the number of offspring per family that survive – a large number of families have no surviving offspring, while a few have a large number. We explored various ways in which Ne can be useful in fisheries management. It can be a surrogate for spawning population size, assuming the ratio between Ne and spawning population size has been previously calculated for that species. Alternatively, it can be a surrogate for recruitment, again assuming that the ratio between Ne and recruitment has been previously determined. The number of species that can be analysed in this way, however, is likely to be small because of species-specific life history requirements that need to be satisfied for accuracy. The most universal approach would be to integrate Ne with spawning stock-recruitment models, so that these models are more accurate when applied to fisheries populations. A pathway to achieve this was established in this project, which we predict will significantly improve fisheries sustainability in the future. Regardless of the success of integrating Ne into spawning stock-recruitment models, Ne could be used as a fisheries monitoring tool. Declines in spawning stock size or increases in natural or harvest mortality would be reflected by a decline in Ne. This would be good for data-poor fisheries and provides fishery independent information, however, we suggest a species-by-species approach. Some species may be too numerous or experiencing too much migration for the method to work. During the project two important theoretical studies of the simultaneous estimation of effective population size and migration were published (Vitalis and Couvet 2001b; Wang and Whitlock 2003). These methods, combined with collection of preliminary genetic data from the tiger prawn population in southern Gulf of Carpentaria population and a computer simulation study that evaluated the effect of differing reproductive strategies on genetic estimates, suggest that this technology could make an important contribution to the stock assessment process in the northern prawn fishery (NPF). Advances in the genomics world are rapid and already a cheaper, more reliable substitute for microsatellite loci in this technology is available. Digital data from single nucleotide polymorphisms (SNPs) are likely to super cede ‘analogue’ microsatellite data, making it cheaper and easier to apply the method to species with large population sizes.
Resumo:
A panel of 19 monoclonal antibodies (mAbs) was used to study the immunological variability of Lettuce mosaic virus (LMV), a member of the genus Potyvirus, and to perform a first epitope characterization of this virus. Based on their specificity of recognition against a panel of 15 LMV isolates, the mAbs could be clustered in seven reactivity groups. Surface plasmon resonance analysis indicated the presence, on the LMV particles, of at least five independent recognition/binding regions, correlating with the seven mAbs reactivity groups. The results demonstrate that LMV shows significant serological variability and shed light on the LMV epitope structure. The various mAbs should prove a new and efficient tool for LMV diagnostic and field epidemiology studies.
Resumo:
The integration of technology in care is core business in nursing and this role requires that we must understand and use technology informed by evidence that goes much deeper and broader than actions and behaviours. We need to delve more deeply into its complexity because there is nothing minor or insignificant about technology as a major influence in healthcare outcomes and experiences. Evidence is needed that addresses technology and nursing from perspectives that examine the effects of technology, especially related to increasing demands for efficiency, the relationship of technology to nursing and caring, and a range of philosophical questions associated with empowering people in their healthcare choices. Specifically, there is a need to confront in practice the ways technique influences care. Technique is the creation of a kind of thinking that is necessary for contemporary healthcare technology to develop and be applied in an efficient and rational manner. Technique is not an entity or specific thing, but rather a way of thinking that seeks to shape and organize nursing activity, and manage efficiently individual difference(s) in care. It emphasizes predetermined causal relationships, conformity, and sameness of product, process, and thought. In response is needed a radical vision of nursing that attempts in a real sense to ensure we meet the needs of individuals and their community. Activism and advocacy are needed, and a willingness to create a certain detachment from the imperatives that technique demands. It is argued that our responsibility as nurses is to respond in practice to the errors, advantages, difficulties, and temptations of technology for the benefit of those who most need our assistance and care.
Resumo:
This book investigates and reveals the interplay between smart technologies and cities, a topic that has gained incredible currency in urban studies in recent years. Beginning with an elaboration of the historical significance of technologies in economic growth, social progress and urban development, the author then goes on to introduce the most prominent smart urban information technologies before demonstrating the use of these technologies in various smart urban systems. The book then showcases some of the most significant cases of smart city best practice from across the globe before discussing the magnitude and prospects of smart technologies and systems for our cities and societies. "The interplay between smart urban technologies and city development is a relatively uncharted territory. Technology and the City aims to fill that gap, exploring the growing importance of smart technologies and systems in contemporary cities, and providing an in-depth understanding of both theoretical and practical aspects of smart urban technology adoption, and its implications for our cities. Beginning with an elaboration of the historical significance of technologies in economic growth, social progress and urban development, Yigitcanlar introduces the most prominent smart urban information technologies. The book showcases significant smart city practices from across the globe that uses smart urban technologies and systems most effectively. It explores the role of these technologies and asks how they can be adopted into the planning, development and management processes of cities for sustainable urban futures. This pioneering volume contributes to the conceptualisation and practice of smart technology and system adoption in our cities by disseminating both conceptual and empirical research findings with real-world best practice applications. With a multidisciplinary approach to themes of technology and urban development, this book is a key reference source for scholars, practitioners, consultants, city officials, policymakers and urban technology enthusiasts."--Publisher website
Resumo:
An optical peanut yield monitor was developed, fabricated, and field-tested. The overall system includes an optical mass-flow sensor, a GPS receiver, and a data acquisition system. The concept for the mass-flow sensor is based on that of the cotton yield-monitor sensor developed previously by Thomasson and Sui (2000). A modified version of the sensor was designed to be specific to peanut mass-flow measurement. Field testing of the peanut yield monitor was conducted in Australia during the May 2003 harvest. After subsequent minor modifications, the system was more extensively tested in Mississippi in October of 2003 and November of 2004. Test results showed that the output of the peanut mass-flow sensor was very strongly correlated with the harvested load weight, and the system's performance was stable and reliable during the tests.
Resumo:
Residue retention is an important issue in evaluating the sustainability of production forestry. However, its long-term impacts have not been studied extensively, especially in sub-tropical environments. This study investigated the long-term impact of harvest residue retention on tree nutrition, growth and productivity of a F1 hybrid (Pinus elliottii var. elliottii × Pinus caribaea var. hondurensis) exotic pine plantation in sub-tropical Australia, under three harvest residue management regimes: (1) residue removal, RR0; (2) single residue retention, RR1; and (3) double residue retention, RR2. The experiment, established in 1996, is a randomised complete block design with 4 replicates. Tree growth measurements in this study were carried out at ages 2, 4, 6, 8 and 10 years, while foliar nutrient analyses were carried out at ages 2, 4, 6 and 10 years. Litter production and litter nitrogen (N) and phosphorus (P) measurements were carried out quarterly over a 15-month period between ages 9 and 10 years. Results showed that total tree growth was still greater in residue-retained treatments compared to the RR0 treatment. However, mean annual increments of diameter at breast height (MAID) and basal area (MAIB) declined significantly after age 4 years to about 68-78% at age 10 years. Declining foliar N and P concentrations accounted for 62% (p < 0.05) of the variation of growth rates after age 4 years, and foliar N and P concentrations were either marginal or below critical concentrations. In addition, litter production, and litter N and P contents were not significantly different among the treatments. This study suggests that the impact of residue retention on tree nutrition and growth rates might be limited over a longer period, and that the integration of alternative forest management practices is necessary to sustain the benefits of harvest residues until the end of the rotation.
Resumo:
Diversification and expansion of global higher education in the 21st century, has resulted in Learning Landscapes for architectural education that can no longer be sustained by the traditional model. Changes have resulted because of surging student numbers, extensions to traditional curricula, evolving competency standards and accreditation requirements, and modified geographical and pedagogical boundaries. The influx of available new technology has helped to democratise knowledge, transforming when, where and how learning takes place. Pressures on government funded higher education budgets highlight the need for a critical review of the current approach to the design and use of learning environments. Efficient design of physical space contributes significantly to savings in provision, management and use of facilities, while also potentially improving pedagogical quality. The purpose of this research is to identify emerging trends in the design of future Learning Landscapes for architectural education in Australasia; to understand where and how students of architecture are likely to learn, in the future context. It explores the important linkages between space, place, pedagogy, technology and context, using a multi methodological qualitative research approach. An Australasian context study will explore the Learning Landscapes of 23 Schools of Architecture across Australia, New Zealand and Papua New Guinea. The focus of this paper is on the methodology which is being employed to undertake dynamic data collection for the study. The research will be determined through mapping all forms of architectural learning environments, pedagogical approaches and contextual issues, to bridge the gap between academic theory, and architectural design practice. An initial understanding that pedagogy is an intrinsic component imbedded within the design of learning environments, will play an important role. Active learning environments which are exemplified by the architectural design studio, support dynamic project based and collaborative connected learning models. These have recently become a lot more common in disciplines outside of design and the arts. It is anticipated, therefore, that the implications for this research may well have a positive impact far beyond the confines of the architectural studio learning environment.