577 resultados para Gyro compass
Resumo:
The main problem of pedestrian dead-reckoning (PDR) using only a body-attached inertial measurement unit is the accumulation of heading errors. The heading provided by magnetometers in indoor buildings is in general not reliable and therefore it is commonly not used. Recently, a new method was proposed called heuristic drift elimination (HDE) that minimises the heading error when navigating in buildings. It assumes that the majority of buildings have their corridors parallel to each other, or they intersect at right angles, and consequently most of the time the person walks along a straight path with a heading constrained to one of the four possible directions. In this article we study the performance of HDE-based methods in complex buildings, i.e. with pathways also oriented at 45°, long curved corridors, and wide areas where non-oriented motion is possible. We explain how the performance of the original HDE method can be deteriorated in complex buildings, and also, how severe errors can appear in the case of false matches with the building's dominant directions. Although magnetic compassing indoors has a chaotic behaviour, in this article we analyse large data-sets in order to study the potential use that magnetic compassing has to estimate the absolute yaw angle of a walking person. Apart from these analysis, this article also proposes an improved HDE method called Magnetically-aided Improved Heuristic Drift Elimination (MiHDE), that is implemented over a PDR framework that uses foot-mounted inertial navigation with an extended Kalman filter (EKF). The EKF is fed with the MiHDE-estimated orientation error, gyro bias corrections, as well as the confidence over that corrections. We experimentally evaluated the performance of the proposed MiHDE-based PDR method, comparing it with the original HDE implementation. Results show that both methods perform very well in ideal orthogonal narrow-corridor buildings, and MiHDE outperforms HDE for non-ideal trajectories (e.g. curved paths) and also makes it robust against potential false dominant direction matchings.
Resumo:
En los últimos años el número de dispositivos móviles y smartphones ha aumentado drásticamente, así como el número de aplicaciones destinadas a estos. Los desarrolladores siempre se han visto frenados en la creación de estas aplicaciones debido a la complejidad que supone la diversidad de sistemas operativos (Android, iOS, Windows Phone, etc), que utilizan lenguajes de programación diferentes, haciendo que, para poder desarrollar una aplicación que funcione en estas plataformas, en verdad haya que implementar una aplicación independiente para cada una de las plataformas. Para solucionar este problema han surgido frameworks, como Appcelerator Titanium, que permiten escribir una sola vez la aplicación y compilarla para las diferentes plataformas móviles objetivo. Sin embargo, estos frameworks están aún en estado muy temprano de desarrollo, por lo que no resuelven toda la problemática ni dan una respuesta completa a los desarrolladores. El objetivo de este Trabajo de Fin de Grado ha sido contribuir a la evolución de estos frameworks mediante la creación de un módulo para Appcelerator Titanium que permita construir de manera ágil aplicaciones multiplataforma que hagan uso de visualizadores de información geográfica. Para ello se propone el desarrollo de un módulo de mapa con soporte para capas WMS, rutas y polígonos en WKT, KML y GeoJSON. Se facilitará además que estas aplicaciones puedan acceder a capacidades del hardware como la brújula y el GPS para realizar un seguimiento de la localización, a la vez que se hace uso de la aceleración por el hardware subyacente para mejorar la velocidad y fluidez de la información visualizada en el mapa. A partir de este módulo se ha creado una aplicación que hace uso de todas sus características y posteriormente se ha migrado a la plataforma Wirecloud4Tablet como componente nativo que puede integrarse con otros componentes web (widgets) mediante técnicas de mashup. Gracias a esto se ha podido fusionar por un lado todas las ventajas que ofrece Wirecloud para el rápido desarrollo de aplicaciones sin necesidad de tener conocimientos de programación, junto con las ventajas que ofrecen las aplicaciones nativas en cuanto a rendimiento y características extras. Usando los resultados de este proyecto, se pueden crear de manera ágil aplicaciones composicionales nativas multiplataforma que hagan uso de visualización de información geográfica; es decir, se pueden crear aplicaciones en pocos minutos y sin conocimientos de programación que pueden ejecutar diferentes componentes (como el mapa) de manera nativa en múltiples plataformas. Se facilita también la integración de componentes nativos (como es el mapa desarrollado) con otros componentes web (widgets) en un mashup que puede visualizarse en dispositivos móviles mediante la plataforma Wirecloud. ---ABSTRACT---In recent years the number of mobile devices and smartphones has increased dramatically as well as the number of applications targeted at them. Developers always have been slowed in the creation of these applications due to the complexity caused by the diversity of operating systems (Android, iOS, Windows Phone, etc), each of them using different programming languages, so that, in order to develop an application that works on these platforms, the developer really has to implement a different application for each platform. To solve this problem frameworks such as Appcelerator Titanium have emerged, allowing developers to write the application once and to compile it for different target mobile platforms. However, these frameworks are still in very early stage of development, so they do not solve all the difficulties nor give a complete solution to the developers. The objective of this final year dissertation is to contribute to the evolution of these frameworks by creating a module for Appcelerator Titanium that permits to nimbly build multi-platform applications that make use of geographical information visualization. To this end, the development of a map module with support for WMS layers, paths, and polygons in WKT, KML, and GeoJSON is proposed. This module will also facilitate these applications to access hardware capabilities such as GPS and compass to track the location, while it makes use of the underlying hardware acceleration to improve the speed and fluidity of the information displayed on the map. Based on this module, it has been created an application that makes use of all its features and subsequently it has been migrated to the platform Wirecloud4Tablet as a native component that can be integrated with other web components (widgets) using mashup techniques. As a result, it has been fused on one side all the advantages Wirecloud provides for fast application development without the need of programming skills, along with the advantages of native apps, such as performance and extra features. Using the results of this project, compositional platform native applications that make use of geographical information visualization can be created in an agile way; ie, in a few minutes and without having programming skills, a developer could create applications that can run different components (like the map) natively on multiple platforms. It also facilitates the integration of native components (like the map) with other web components (widgets) in a mashup that can be displayed on mobile devices through the Wirecloud platform.
Resumo:
This paper try to prove how artisans c ould discover all uniform tilings and very interesting others us ing artisanal combinatorial pro cedures without having to use mathematical procedures out of their reac h. Plane Geometry started up his way through History by means of fundamental drawing tools: ruler and co mpass. Artisans used same tools to carry out their orna mental patterns but at some point they began to work manually using physical representations of fi gures or tiles previously drawing by means of ruler and compass. That is an important step for craftsman because this way provides tools that let him come in the world of symmetry opera tions and empirical knowledge of symmetry groups. Artisans started up to pr oduce little wooden, ceramic or clay tiles and began to experiment with them by means of joining pieces whether edge to edge or vertex to vertex in that way so it can c over the plane without gaps. Economy in making floor or ceramic tiles could be most important reason to develop these procedures. This empiric way to develop tilings led not only to discover all uniform tilings but later discovering of aperiodic tilings.
Resumo:
This paper try to prove how artisans c ould discover all uniform tilings and very interesting others us ing artisanal combinatorial pro cedures without having to use mathematical procedures out of their reac h. Plane Geometry started up his way through History by means of fundamental drawing tools: ruler and co mpass. Artisans used same tools to carry out their orna mental patterns but at some point they began to work manually using physical representations of fi gures or tiles previously drawing by means of ruler and compass. That is an important step for craftsman because this way provides tools that let him come in the world of symmetry opera tions and empirical knowledge of symmetry groups. Artisans started up to pr oduce little wooden, ceramic or clay tiles and began to experiment with them by means of joining pieces whether edge to edge or vertex to vertex in that way so it can c over the plane without gaps. Economy in making floor or ceramic tiles could be most important reason to develop these procedures. This empiric way to develop tilings led not only to discover all uniform tilings but later discovering of aperiodic tilings.
Resumo:
Essa pesquisa objetiva a análise da relação entre religião e política, em perspectiva de gênero considerando a atuação de parlamentares evangélicos/as na 54ª Legislatura (de 2011 a 2014) e a forma de intervenção desses atores no espaço político brasileiro quanto à promulgação de leis e ao desenvolvimento de políticas públicas que contemplem, dentre outras, a regulamentação do aborto, a criminalização da homofobia, a união estável entre pessoas do mesmo sexo e os desafios oriundos dessa posição para o Estado Brasileiro que se posiciona como laico. Ora, se laico remete à ideia de neutralidade estatal em matéria religiosa, legislar legitimado por determinados princípios fundamentados em doutrinas religiosas, pode sugerir a supressão da liberdade e da igualdade, o não reconhecimento da diversidade e da pluralidade e a ausência de limites entre os interesses públicos / coletivos e privados / particulares. Os procedimentos metodológicos para o desenvolvimento dessa pesquisa fundamentam-se na análise e interpretação bibliográfica visando estabelecer a relação entre religião e política, a conceituação, qualificação e tipificação do fenômeno da laicidade; levantamento documental; análise dos discursos de parlamentares evangélicos/as divulgados pela mídia, proferidos no plenário e adotados para embasar projetos de leis; pesquisa qualitativa com a realização de entrevistas e observações das posturas públicas adotadas pelos/as parlamentares integrantes da Frente Parlamentar Evangélica - FPE. Porquanto, os postulados das Ciências da Religião devidamente correlacionados com a interpretação do conjunto de dados obtidos no campo de pesquisa podem identificar o lugar do religioso na sociedade de forma interativa com as interfaces da laicidade visando aprofundar a compreensão sobre a democracia, sobre o lugar da religião nas sociedades contemporâneas e sobre os direitos difusos, coletivos e individuais das pessoas.
Resumo:
A presente tese propõe uma metodologia de vídeo-mapeamento móvel georreferenciado a partir do desenvolvimento de protótipos que utilizam uma Interface de Geovisualização Multimídia para sincronizar o registro (em vídeo) de um local ou evento de interesse com a rota percorrida pelo veículo de inspeção (sobre mapa ou imagem), através da coleta de dados por sensores móveis: câmera digital, microfone, receptor GNSS e bússola digital. A interface permite a integração desses sensores com os atuais serviços de mapas digitais disponíveis na web. Sistemas como esse melhoram significativamente as análises temporais, a gestão e a tomada de decisão. A interface proposta e desenvolvida no presente trabalho é útil para muitas aplicações como ferramenta de monitoramento e inventário. Esta interface pode ser entendida como o componente visual de um sistema de mapeamento móvel ou como um sistema cartográfico alternativo ou complementar, para aplicações em que a precisão geométrica do receptor GNSS, na modalidade de navegação, é suficiente e sua acessibilidade, um fator competitivo. As aplicações desenvolvidas no presente trabalho foram duas: um sistema de monitoramento e inventário de placas de sinalização viária e um sistema de monitoramento de cheias/secas e inventário de propriedades na borda de reservatórios de hidroelétricas, ambos em pleno funcionamento.
Resumo:
This sewn volume contains Noyes’ mathematical exercises in geometry; trigonometry; surveying; measurement of heights and distances; plain, oblique, parallel, middle latitude, and mercator sailing; and dialing. Many of the exercises are illustrated by carefully hand-drawn diagrams, including a mariners’ compass and moon dials.
Resumo:
Handwritten mathematical notebook of Ephraim Eliot, kept in 1779 while he was a student at Harvard College. The volume contains rules, definitions, problems, drawings, and tables on arithmetic, geometry, trigonometry, surveying, calculating distances, and dialing. Some of the exercises are illustrated by unrefined hand-drawn diagrams, as well as a sketch of a mariner’s compass. The sections on navigation, mensuration of heights, and spherical geometry are titled but not completed. The ink of the later text, beginning with Trigonometry, is faded.
Resumo:
Notebook containing the handwritten mathematical exercises of William Tudor, kept in 1795 while he was an undergraduate at Harvard College. The volume contains rules, definitions, problems, drawings, and tables on geometry, trigonometry, surveying, calculating distances, sailing, and dialing. Some of the exercises are illustrated with hand-drawn diagrams. The Menusration of Heights and Distances section contains color drawings of buildings and trees, and some have been altered with notes in different hands and with humorous additions. For instance, a drawing of a tower was drawn into a figure titled “Egyptian Mummy.” Some of the images are identified: “A rude sketch of the Middlesex canal,” Genl Warren’s monument on Bunker Hill,” “Noddles Island,” “the fields of Elysium,” and the “Roxbury Canal.” The annotations and additional drawings are unattributed.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: An accurate chart of the world with the new discoveries : also a view of the general &c coasting trade winds, monsoons or shifting trade winds & the variations of the compass ; from the latest and best authorities by T. Kitchin, Geographer for the Lond. Mag. It was published ca. 1774. Scale [ca. 1:90,000,000]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the 'World Mercator' projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, trade winds, magnetic variations, shoreline features, and more. Relief shown pictorially. Includes text and notes. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection and the Harvard University Library as part of the Open Collections Program at Harvard University project: Organizing Our World: Sponsored Exploration and Scientific Discovery in the Modern Age. Maps selected for the project correspond to various expeditions and represent a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Plan of the city of Washington in the territory of Columbia : ceded by the states of Virginia and Maryland to the United States of America, and by them established as the seat of their government, after the year MDCCC, engrav'd by Thackara & Vallance Philad'a 1792 ; in order to execute this plan, Mr. Ellicott drew a true meridional line ... and left nothing to the uncertainty of the compass. Andrew Ellicott plan of Washington, D.C. It was published in 1792. Scale [ca. 1:19,800]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Maryland State Plane Coordinate System Meters NAD83 (Fipszone 1900). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, block numbers and proposed government buildings, drainage, and more. Relief is shown by hachures. Depths are shown by soundings. Includes text, notes, and coat-of-arms. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Entrance to San Francisco Bay, California, from a trigonometrical survey under the direction of A.D. Bache, Superintendent of the Survey of the Coast of the United States ; triangulation by R.D. Cutts, asst. & A.F. Rodgers, sub-asst. ; topography by R.D. Cutts, asst., A.M. Harrison & A.F. Rodgers, sub-assts. ; hydrography by the party under the command of Lieut. Comdg. James Alden, U.S.N. assist. It was published by The Survey in 1877. Scale 1:50,000. Covers the San Francisco Bay Area. The image inside the map neatline is georeferenced to the surface of the earth and fit to the California Zone III State Plane Coordinate System NAD83 (in Feet) (Fipszone 0403). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows coastal features such as lighthouses, buoys, beacons, rocks, channels, points, coves, islands, bottom soil types, wharves, and more. Includes also selected land features such as roads, railroads, drainage, land cover, selected buildings, towns, and more. Relief shown by hachures and spot heights; depths by sounding, shading, and contours. Includes inset map: Sub-sketch of entrance to San Francisco Bay (Scale 1:400,000), and inset views: View of the entrance to San Francisco Bay, Alcatraz N.E. by E. 1/2 (by compass 10 miles) -- View of the entrance to San Francisco Bay from Yerba Buena Id. -- View of the entrance to San Pablo Bay from near Angel Id. Also includes text and tables. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
Presented are physical and biological data for the region extending from the Barents Sea to the Kara Sea during 158 scientific cruises for the period 1913-1999. Maps with the temporal distribution of physical and biological variables of the Barents and Kara Seas are presented, with proposed quality control criteria for phytoplankton and zooplankton data. Changes in the plankton community structure between the 1930s, 1950s, and 1990s are discussed. Multiple tables of Arctic Seas phytoplankton and zooplankton species are presented, containing ecological and geographic characteristics for each species, and images of live cells for the dominant phytoplankton species.