984 resultados para Growth kinetics
Resumo:
Currently, the combination of cisplatin and gemcitabine is considered a standard chemotherapeutic protocol for bladder cancer. However, the mechanism by which these drugs act on tumor cells is not completely understood. The aim of the present study was to investigate the effects of these two antineoplastic drugs on the apoptotic index and cell cycle kinetics of urinary bladder transitional carcinoma cell lines with wild-type or mutant TP53 (RT4: wild type for TP53; 5637 and T24: mutated TP53). Cytotoxicity, cell survival assays, clonogenic survival assays and flow cytometric analyses for cell cycle kinetics and apoptosis detection were performed with three cell lines treated with different concentrations of cisplatin and gemcitabine. G(1) cell cycle arrest was observed in the three cell lines after treatment with gemcitabine and gemcitabine plus cisplatin. A significant increase in cell death was also detected in all cell lines treated with cisplatin or gemcitabine. Lower survival rates occurred with the combined drug protocol independent of TP53 status. TP53-wild type cells (RT4) were more sensitive to apoptosis than were mutated TP53 cells when treated with cisplatin or gemcitabine. Concurrent treatment with cisplatin and gemcitabine was more effective on transitional carcinoma cell lines than either drug alone; the drug combination led to a decreased cell survival that was independent of TP53 status. Therefore, the synergy between low concentrations of cisplatin and gemcitabine may have clinical relevance, as high concentrations of each individual drug are toxic to whole organisms.
Resumo:
There is considerable evidence showing that the neurodegenerative processes that lead to sporadic Parkinson`s disease (PD) begin many years before the appearance of the characteristic motor symptoms and that impairments in olfactory, cognitive and motor functions are associated with time-dependent disruption of dopaminergic neurotransmission in different brain areas. Midkine is a 13-kDa retinoic acid-induced heparin-binding growth factor involved in many biological processes in the central nervous system such as cell migration, neurogenesis and tissue repair. The abnormal midkine expression may be associated with neurochemical dysfunction in the dopaminergic system and cognitive impairments in rodents. Here, we employed adult midkine knockout mice (Mdk(-/-)) to further investigate the relevance of midkine in dopaminergic neurotransmission and in olfactory, cognitive and motor functions. Mdk(/-) mice displayed pronounced impairments in their olfactory discrimination ability and short-term social recognition memory with no gross motor alterations. Moreover, the genetic deletion of midkine decreased the expression of the enzyme tyrosine hydroxylase in the substantia nigra reducing partially the levels of dopamine and its metabolites in the olfactory bulb and striatum of mice. These findings indicate that the genetic deletion of midkine causes a partial loss of dopaminergic neurons and depletion of dopamine, resulting in olfactory and memory deficits with no major motor impairments. Therefore, Mdk(-/-) mice may represent a promising animal model for the study of the early stages of PD and for testing new therapeutic strategies to restore sensorial and cognitive processes in PD.
Resumo:
Despite wide clinical application, the efficacy of platelet-rich plasma (PRP) for repairing bone defects and enhancing osseointegration of metal implants is still subject of debate. This study aimed to evaluate the effects of a well-defined PRP-like mixture containing platelet-derived growth factor-BB, transforming growth factor (TGF)-beta 1, TGF-beta 2, albumin, fibronectin, and thrombospondin [growth factors (GFs) + proteins] on the development of the osteogenic phenotype on titanium (Ti) in vitro. Human alveolar bone-derived osteoblastic cells were subcultured on Ti discs and exposed during the first 7 days to osteogenic medium supplemented with GFs + proteins and to osteogenic medium alone thereafter up to 14 days. Control cultures were exposed to only osteogenic medium. Dose-response experiments were carried out using rat primary calvarial cells exposed to GFs + proteins and 1:10 or 1:100 dilutions of the mixture. Treated human-derived cell cultures exhibited a significantly higher number of cycling cells at days 1 and 4 and of total cells at days 4 and 7, significantly reduced alkaline phosphatase (ALP) activity at days 4, 7, and 10, and no Alizarin red-stained areas (calcium deposits) at day 14, indicating an impairment in osteoblast differentiation. Although the 1:10 and 1:100 dilutions of the mixture restored the proliferative activity of rat-derived osteogenic cells to control levels and promoted a significant increase in ALP activity at day 10 compared with GFs + proteins, mineralized nodule formation was only observed with the 1:100 dilution (similar to 50% of the control). These results showed that a PRP-like protein mixture inhibits development of the osteogenic phenotype in both human and rat osteoblastic cell cultures grown on Ti. (J Histochem Cytochem 57:265-276, 2009)
Resumo:
Strategies to promote bone repair have included exposure of cells to growth factor (GF) preparations from blood that generally include proteins as part of a complex mixture. This study aimed to evaluate the effects of such a mixture on different parameters of the development of the osteogenic phenotype in vitro. Osteoblastic cells were obtained by enzymatic digestion of human alveolar bone and cultured under standard osteogenic conditions until subconfluence. They were subcultured on Thermanox coverslips up to 14 days. Treated cultures were exposed during the first 7 days to osteogenic medium supplemented with a GFs + proteins mixture containing the major components found in platelet extracts [plate I et-derived growth factor-BB, transforming growth factor (TGF)-beta 1, TGF-beta 2, albumin, fibronectin, and thrombospondin] and to osteogenic medium alone thereafter. Control cultures were exposed only to the osteogenic medium. Treated cultures exhibited a significantly higher number of adherent cells from day 4 onward and of cycling cells at days 1 and 4, weak alkaline phosphatase (ALP) labeling, and significantly decreased levels of ALP activity and mRNA expression. At day 14, no Alizarin red-stained nodular areas were detected in cultures treated with GFs + proteins. Results were confirmed in the rat calvaria-derived osteogenic cell culture model. The addition of bone morphogenetic protein 7 or growth and differentiation factor 5 to treated cultures upregulated Runx2 and ALP mRNA expression, but surprisingly, ALP activity was not restored. These results showed that a mixture of GFs + proteins affects the development of the osteogenic phenotype both in human and rat cultures, leading to an increase in the number of cells, but expressed a less differentiated state.
Resumo:
it has been demonstrated that the effect of GH on bone tissue is reduced with aging. In this study we tested the hypothesis that the action of GH on osteoblastic cells is donor-age-dependent by investigating the effect of GH on the development of osteoblastic phenotype in cultures of cells from adolescents (13-16 years old), young adults (18-35 years old), and adults (36-49 years old). Osteoblastic cells derived from human alveolar bone were cultured with or without GH for periods of up to 21 days, and parameters of in vitro osteogenesis and gene expression of osteoblastic markers were evaluated. GH increased culture growth, collagen content and alkaline phosphatase (ALP) activity in cultures from adolescents and young adults, whereas non-significant effect was observed in cultures from adults. While GH significantly increased the bone-like formation in cultures from adolescents, a slightly effect was observed in cultures from young adults and no alteration was detected in cultures from adults. Results from real-time PCR demonstrated that GH upregulated ALP, osteocalcin, type I collagen, and Cbfa1 mRNA levels in cultures from adolescents. In addition, cultures from young adults showed higher ALP mRNA expression and the expression of all evaluated genes was not affected by GH in cultures from adults. These results indicate that the GH effect on both in vitro osteogenesis and gene expression of osteoblastic markers is donor-age-dependent, being more pronounced on cultures from adolescents.
Resumo:
High-precision Th-230-U-238 ages for a stalagmite from Newdegate Cave in southern Tasmania, Australia define a rare record of precipitation between 100 and 155 ka before the present. The fastest stalagmite growth occurred between 129.2 +/- 1.6 and 122.1 +/- 2.0 ka (similar to 61.5 mm/ka), coinciding with a time of prolific coral growth from Western Australia (128-122 ka). This is the first high-resolution continental record in the Southern Hemisphere that can be compared and correlated with the marine record. Such correlation shows that in southern Australia the onset of full interglacial sea level and the initiation of highest precipitation on land were synchronous. The stalagmite growth rate between 129.2 and 142.2 ka (similar to 5.9 mm/ka) was lower than that between 142.2 and 154.5 ka (similar to 18.7 mm/ka), implying drier conditions during the Penultimate Deglaciation, despite rising temperature and sea level. This asymmetrical precipitation pattern is caused by latitudinal movement of subtropical highs and an associated Westerly circulation, in response to a changing Equator-to-Pole temperature gradient. Both marine and continental records in Australia strongly suggest that the insolation maximum between 126 and 128 ka at 65 degreesN was directly responsible for the maintenance of full Last Interglacial conditions, although the triggers that initiated Penultimate Deglaciation (at similar to 142 ka) remain unsolved. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Prader-Willi syndrome (PWS) was originally described less than 50 y ago,1 although reference to children with characteristics of the syndrome are to be found in other literature previous to this.2 Until relatively recently the diagnosis was made upon the clinical features as outlined by Holm,3 which include severe muscular hypotonia in the neonatal period leading to feeding difficulties and undernutrition, hypogonadism and later hyperphagia and obesity. Latterly the syndrome has been identified as being associated with an interstitial deletion of the q11-13 region on chromosome 15.4 In the majority of cases the deletion is in the paternally derived chromosome. In the remainder of cases there seems to be a failure to inherit the entire paternal chromosome and as a consequence both the chromosomes inherited are maternal, thus leading to maternal disomy.
Resumo:
The cDNA sequence for insulin-like growth factor 2 (IGF-2) was determined from the liver of the marsupial brushtail possum (Trichosurus vulpecula) using reverse transcription followed by polymerase chain reaction (RT-PCR) with gene-specific primers. The 359 bp of possum sequence encompassed the mature peptide, 27 bp of the signal peptide, and 125 bp of the E-peptide. Alignment of the deduced amino acid sequence with those from other species indicated that the mature peptide was 71 amino acids in length, 4 amino acids longer than most other mammals. At both the nucleotide and amino acid levels there was a high degree of sequence identity with IGF-2 from other mammalian and nonmammalian species. Amino acid identity ranged from 94.4% with a variant form of human IGF-2 to 80.3% with zebrafinch IGF-2. Northern analysis revealed that radiolabeled possum IGF-2, cDNA hybridized to multiple transcripts in the liver of both adult possums and 150-day-old pouch young and that the overall level of expression was greater in pouch young. Semiquantitative RT-PCR with total RNA from liver samples of pouch young aged 12 to 150 days postpartum and adults confirmed that IGF-2 gene expression was two to three times more abundant in pouch young than in adults but there was no significant change in the level of expression during pouch life. Unlike other mammalian species, in which there is a decline in levels of liver IGF-2 gene expression around the time of birth, levels in the marsupial brushtail possum remain elevated for at least 150 days after birth. This suggests that the decline in liver IGF-2 expression in marsupials and eutherians occurs at a similar stage of development and may reflect a role for this growth factor during the postnatal growth and development of the marsupial, (C) 2001 Academic Press.
Growth hormone (GH)/GH receptor expression and GH-mediated effects during early bovine embryogenesis
Resumo:
Pituitary growth hormone (GH) stimulates postnatal growth and metabolism. The role of CH and its receptor (GHR) during prenatal development, however, is still controversial. As shown by reverse transcription polymerase chain reaction (RT-PCR), bovine in vitro fertilization embryos synthesized the transcript of GHR from Day 2 of embryonic life onwards. Real time RT-PCR revealed that synthesis of GHR mRNA was increased 5.9-fold in 6-day-old embryos compared with 2-day-old embryos. Using in situ hybridization, the mRNA encoding GHR was predominantly localized to the inner cell mass of blastocysts. The GHR protein was first visualized 3 days after fertilization. GH-specific transcripts were first detected in embryos on Day 8 of in vitro culture. As shown by transmission electron microscopy, GH treatment resulted in elimination of glycogen storage in 6- to 8-day-old embryos and an increase in exocytosis of lipid vesicles. These results suggest that a functional GHR able to modulate carbohydrate and lipid metabolism is synthesized during preimplantation development of the bovine embryo and that this GHR may be subject to activation by embryonic GH after Day 8.
Resumo:
GH actions are dependent on receptor dimerization. The GH receptor antagonist, B2036-PEG, has been developed for treating acromegaly. B2036 has mutations in site 1 to enhance receptor binding and in site 2 to block receptor dimerization. Pegylation (B2036-PEG) increases half-life and lowers immunogenicity, but high concentrations are required to control insulin-like growth factor-I levels. We examined antagonist structure and function and the impact of pegylation on biological efficacy. Unpegylated B2036 had a 4.5-fold greater affinity for GH binding protein (GHBP) than GH but similar affinity for membrane receptor. Pegylation substantially reduced membrane binding affinity and receptor antagonism, as assessed by a transcription assay, by 39- and 20-fold, respectively. GHBP reduced antagonist activity of unpegylated B2036 but did not effect antagonism by B2036-PEG. B2036 down-regulated receptors, and membrane binding sites doubled in the presence of dimerization-blocking antibodies, suggesting that B2036 binds to a receptor dimer. It is concluded that the high concentration requirement of B2036-PEG for clinical efficacy relates to pegylation, which decreases binding to membrane receptor but has the advantages of reduced clearance, immunogenicity, and interactions with GHBP. Our studies suggest that B2036 binds to a receptor dimer and induces internalization but not signaling.
Resumo:
OBJECTIVE: To observe the chronic effects of human growth hormone (hGH) and AOD9604 (a C-terminal fragment of hGH) on body weight, energy balance, and substrate oxidation rates in obese (ob/ob) and lean C57BL/6Jmice. In vitro assays were used to confirm whether the effects of AOD9604 are mediated through the hGH receptor, and if this peptide is capable of cell proliferation via the hGH receptor. METHOD: Obese and lean mice were treated with hGH, AOD or saline for 14 days using mini-osmotic pumps. Body weight, caloric intake, resting energy expenditure, fat oxidation, glucose oxidation, and plasma glucose, insulin and glycerol were measured before and after treatment. BaF-BO3 cells transfected with the hGH receptor were used to measure in Vitro I-125-hGH receptor binding and cell proliferation. RESULTS: Both hGH and AOD significantly reduced body weight gain in obese mice. This was associated with increased in vivo fat oxidation and increased plasma glycerol levels (an index of lipolysis). Unlike hGH, however, AOD9604 did not induce hyperglycaemia or reduce insulin secretion. AOD9604 does not compete for the hGH receptor and nor does it induce cell proliferation, unlike hGH. CONCLUSIONS: Both hGH and its C-terminal fragment reduce body weight gain, increase fat oxidation, and stimulate lipolysis in obese mice, yet AOD9604 does not interact with the hGH receptor. Thus, the concept of hGH behaving as a pro-hormone is further confirmed. This data shows that fragments of hGH can act in a manner novel to traditional hGH-stimulated pathways.
Resumo:
The diffusion model for percutaneous absorption is developed for the specific case of delivery to the skin being limited by the application of a finite amount of solute. Two cases are considered; in the first, there is an application of a finite donor (vehicle) volume, and in the second, there are solvent-deposited solids and a thin vehicle with a high partition coefficient. In both cases, the potential effect of an interfacial resistance at the stratum corneum surface is also considered. As in the previous paper, which was concerned with the application of a constant donor concentration, clearance limitations due to the viable eqidermis, the in vitro sampling rate, or perfusion rate in vivo are included. Numerical inversion of the Laplace domain solutions was used for simulations of solute flux and cumulative amount absorbed and to model specific examples of percutaneous absorption of solvent-deposited solids. It was concluded that numerical inversions of the Laplace domain solutions for a diffusion model of the percutaneous absorption, using standard scientific software (such as SCIENTIST, MicroMath Scientific software) on modern personal computers, is a practical alternative to computation of infinite series solutions. Limits of the Laplace domain solutions were used to define the moments of the flux-time profiles for finite donor volumes and the slope of the terminal log flux-time profile. The mean transit time could be related to the diffusion time through stratum corneum, viable epidermal, and donor diffusion layer resistances and clearance from the receptor phase. Approximate expressions for the time to reach maximum flux (peak time) and maximum flux were also derived. The model was then validated using reported amount-time and flux-time profiles for finite doses applied to the skin. It was concluded that for very small donor phase volume or for very large stratum corneum-vehicle partitioning coefficients (e.g., for solvent deposited solids), the flux and amount of solute absorbed are affected by receptor conditions to a lesser extent than is obvious for a constant donor constant donor concentrations. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:504-520, 2001.
Resumo:
In the last two decades, increasing numbers of workplaces in Australia have introduced 12-hour shifts. This increase is due, in part, to government policies aimed at promoting labour flexibility. The purpose of this paper is to examine the cover afforded by the Workplace Relations Act 1996 and other industrial relations legislation in terms of shift-workers’ health and safety. Particular reference is made to the broader social, economic and political context surrounding the introduction and use of 12-hour shifts, as it is this context that shapes the constraints and opportunities facing employers and employees in the work arrangements they choose and how they are negotiated. We conclude that the current system of regulating industrial relations in Australia is largely outcome-focused and inadequate. The bargaining process receives little regulation in terms of considering how changes could affect health and safety in the workplace or how changes might affect individual workers. As a result, the increased introduction of unsafe shiftworking arrangements is a worrying, and likely, prospect.