920 resultados para Ground beetles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract  Xyleborini are a species-rich tribe of ambrosia beetles, which are haplodiploid and typically mate among siblings within their natal brood chamber. Several characteristics of this tribe would predict the evolution of higher levels of sociality: high genetic relatedness within galleries due to inbreeding, high costs of dispersal and the potential benefit of cooperation in brood care within the natal gallery (e.g. by fungus gardening, gallery extension, offspring feeding and cleaning). However, information on the social system of these beetles is very limited. We examined the potential for cooperative breeding in Xyleborinus saxeseni by monitoring dispersal in relation to brood size and composition. Results show that adult female offspring delay dispersal despite dispersal opportunities, and apparently some females never disperse. The femalesâ?? decision to stay seems to depend on the presence of eggs and dependent siblings. We found no indication that female offspring reproduce in their natal gallery, as colonies with many mature daughters do not contain more eggs than those with few or no daughters. There is a significant positive relationship between the number of females present and the number of dependent siblings (but not eggs), which suggests that cooperative brood care of female offspring raises colony productivity by improving survival rates of immatures. Our results suggest that cooperative breeding is likely to occur in X. saxeseni and possibly other xyleborine species. We argue that a closer look at sociality within this tribe may yield important information on the factors determining the evolution of cooperative breeding and advanced social organization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amount and type of ground cover is an important characteristic to measure when collecting soil disturbance monitoring data after a timber harvest. Estimates of ground cover and bare soil can be used for tracking changes in invasive species, plant growth and regeneration, woody debris loadings, and the risk of surface water runoff and soil erosion. A new method of assessing ground cover and soil disturbance was recently published by the U.S. Forest Service, the Forest Soil Disturbance Monitoring Protocol (FSDMP). This protocol uses the frequency of cover types in small circular (15cm) plots to compare ground surface in pre- and post-harvest condition. While both frequency and percent cover are common methods of describing vegetation, frequency has rarely been used to measure ground surface cover. In this study, three methods for assessing ground cover percent (step-point, 15cm dia. circular and 1x5m visual plot estimates) were compared to the FSDMP frequency method. Results show that the FSDMP method provides significantly higher estimates of ground surface condition for most soil cover types, except coarse wood. The three cover methods had similar estimates for most cover values. The FSDMP method also produced the highest value when bare soil estimates were used to model erosion risk. In a person-hour analysis, estimating ground cover percent in 15cm dia. plots required the least sampling time, and provided standard errors similar to the other cover estimates even at low sampling intensities (n=18). If ground cover estimates are desired in soil monitoring, then a small plot size (15cm dia. circle), or a step-point method can provide a more accurate estimate in less time than the current FSDMP method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mount Etna, Italy, is one of the most active volcanoes in the world, and is also regarded as one of the strongest volcanic sources of sulfur dioxide (SO2) emissions to the atmosphere. Since October 2004, an automated ultraviolet (UV) spectrometer network (FLAME) has provided ground-based SO2 measurements with high temporal resolution, providing an opportunity to validate satellite SO2 measurements at Etna. The Ozone Monitoring Instrument (OMI) on the NASA Aura satellite, which makes global daily measurements of trace gases in the atmosphere, was used to compare SO2 amount released by the volcano during paroxysmal lava-fountaining events from 2004 to present. We present the first comparison between SO2 emission rates and SO2 burdens obtained by the OMI transect technique and OMI Normalized Cloud-Mass (NCM) technique and the ground-based FLAME Mini-DOAS measurements. In spite of a good data set from the FLAME network, finding coincident OMI and FLAME measurements proved challenging and only one paroxysmal event provided a good validation for OMI. Another goal of this work was to assess the efficacy of the FLAME network in capturing paroxysmal SO2 emissions from Etna, given that the FLAME network is only operational during daylight hours and some paroxysms occur at night. OMI measurements are advantageous since SO2 emissions from nighttime paroxysms can often be quantified on the following day, providing improved constraints on Etna’s SO2 budget.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the canopy cover of an urban environment leads to better estimates of carbon storage and more informed management decisions by urban foresters. The most commonly used method for assessing urban forest cover type extent is ground surveys, which can be both timeconsuming and expensive. The analysis of aerial photos is an alternative method that is faster, cheaper, and can cover a larger number of sites, but may be less accurate. The objectives of this paper were (1) to compare three methods of cover type assessment for Los Angeles, CA: handdelineation of aerial photos in ArcMap, supervised classification of aerial photos in ERDAS Imagine, and ground-collected data using the Urban Forest Effects (UFORE) model protocol; (2) to determine how well remote sensing methods estimate carbon storage as predicted by the UFORE model; and (3) to explore the influence of tree diameter and tree density on carbon storage estimates. Four major cover types (bare ground, fine vegetation, coarse vegetation, and impervious surfaces) were determined from 348 plots (0.039 ha each) randomly stratified according to land-use. Hand-delineation was better than supervised classification at predicting ground-based measurements of cover type and UFORE model-predicted carbon storage. Most error in supervised classification resulted from shadow, which was interpreted as unknown cover type. Neither tree diameter or tree density per plot significantly affected the relationship between carbon storage and canopy cover. The efficiency of remote sensing rather than in situ data collection allows urban forest managers the ability to quickly assess a city and plan accordingly while also preserving their often-limited budget.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turrialba is one of the largest and most active stratovolcanoes in the Central Cordillera of Costa Rica and an excellent target for validation of satellite data using ground based measurements due to its high elevation, relative ease of access, and persistent elevated SO2 degassing. The Ozone Monitoring Instrument (OMI) aboard the Aura satellite makes daily global observations of atmospheric trace gases and it is used in this investigation to obtain volcanic SO2 retrievals in the Turrialba volcanic plume. We present and evaluate the relative accuracy of two OMI SO2 data analysis procedures, the automatic Band Residual Index (BRI) technique and the manual Normalized Cloud-mass (NCM) method. We find a linear correlation and good quantitative agreement between SO2 burdens derived from the BRI and NCM techniques, with an improved correlation when wet season data are excluded. We also present the first comparisons between volcanic SO2 emission rates obtained from ground-based mini-DOAS measurements at Turrialba and three new OMI SO2 data analysis techniques: the MODIS smoke estimation, OMI SO2 lifetime, and OMI SO2 transect techniques. A robust validation of OMI SO2 retrievals was made, with both qualitative and quantitative agreements under specific atmospheric conditions, proving the utility of satellite measurements for estimating accurate SO2 emission rates and monitoring passively degassing volcanoes.