940 resultados para Graph Decomposition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel method for power quality signal decomposition is proposed based on Independent Component Analysis (ICA). This method aims to decompose the power system signal (voltage or current) into components that can provide more specific information about the different disturbances which are occurring simultaneously during a multiple disturbance situation. The ICA is originally a multichannel technique. However, the method proposes its use to blindly separate out disturbances existing in a single measured signal (single channel). Therefore, a preprocessing step for the ICA is proposed using a filter bank. The proposed method was applied to synthetic data, simulated data, as well as actual power system signals, showing a very good performance. A comparison with the decomposition provided by the Discrete Wavelet Transform shows that the proposed method presented better decoupling for the analyzed data. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed to develop plurimetallic electrocatalysts composed of Pt, Ru, Ni, and Sn supported on C by decomposition of polymeric precursors (DPP), at a constant metal: carbon ratio of 40:60 wt.%, for application in direct ethanol fuel cell (DEFC). The obtained nanoparticles were physico-chemically characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). XRD results revealed a face-centered cubic crystalline Pt with evidence that Ni, Ru, and Sn atoms were incorporated into the Pt structure. Electrochemical characterization of the nanoparticles was accomplished by cyclic voltammetry (CV) and chronoamperometry (CA) in slightly acidic medium (0.05 mol L-1 H2SO4), in the absence and presence of ethanol. Addition of Sn to PtRuNi/C catalysts significantly shifted the ethanol and CO onset potentials toward lower values, thus increasing the catalytic activity, especially for the quaternary composition Pt64Sn15Ru13Ni8/C. Electrolysis of ethanol solutions at 0.4 V vs. RHE allowed determination of acetaldehyde and acetic acid as the main reaction products. The presence of Ru in alloys promoted formation of acetic acid as the main product of ethanol oxidation. The Pt64Sn15Ru13Ni8/C catalyst displayed the best performance for DEFC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new algebraic-graph method for identification of islanding in power system grids is proposed. The proposed method identifies all the possible cases of islanding, due to the loss of a equipment, by means of a factorization of the bus-branch incidence matrix. The main features of this new method include: (i) simple implementation, (ii) high speed, (iii) real-time adaptability, (iv) identification of all islanding cases and (v) identification of the buses that compose each island in case of island formation. The method was successfully tested on large-scale systems such as the reduced south Brazilian system (45 buses/72 branches) and the south-southeast Brazilian system (810 buses/1340 branches). (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of sugar cane bagasse cellulose saccharification and the decomposition of glucose under extremely low acid (ELA) conditions, (0.07%), 0.14%, and 0.28% H2SO4, and at high temperatures were investigated using batch reactors. The first-order rate constants were obtained by weight loss, remaining glucose, and fitting glucose concentration profiles determined with HPLC using the Saeman model. The maximum glucose yields reached 67.6% (200 degrees C, 0.07% H2SO4, 30 min), 69.8% (210 degrees C, 0.14% H2SO4, 10 min), and 67.3% (210 degrees C, 0.28% H2SO4, 6 min). ELA conditions produced remarkable glucose yields when applied to bagasse cellulose. The first-order rate constants were used to calculate activation energies and extrathermodynamic parameters to elucidate the reaction mechanism under ELA conditions. The effect of acid concentration on cellulose hydrolysis and glucose decomposition was also investigated. The observed activation energies and reaction orders with respect to hydronium ion for cellulose hydrolysis and glucose decomposition were 184.9 and 124.5 kJ/mol and 1.27 and 0.75, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectral decomposition has rarely been used to investigate complex networks. In this work we apply this concept in order to define two kinds of link-directed attacks while quantifying their respective effects on the topology. Several other kinds of more traditional attacks are also adopted and compared. These attacks had substantially diverse effects, depending on each specific network (models and real-world structures). It is also shown that the spectrally based attacks have special effects in affecting the transitivity of the networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the effects of soil mesofauna and the litter decomposition environment (above and belowground) on leaf decomposition rates in three forest types in southeastern Brazil. To estimate decomposition experimentally, we used litterbags with a standard substrate in a full-factorial experimental design. We used model selection to compare three decomposition models and also to infer the importance of forest type, decomposition environment, mesofauna, and their interactions on the decomposition process. Rather than the frequently used simple and double-exponential models, the best model to describe our dataset was the exponential deceleration model, which assumed a single organic compartment with an exponential decrease of the decomposition rate. Decomposition was higher in the wet than in the seasonal forest, and the differences between forest types were stronger aboveground. Regarding litter decomposition environment, decomposition was predominantly higher below than aboveground, but the magnitude of this effect was higher in the seasonal than in wet forests. Mesofauna exclusion treatments had slower decomposition, except aboveground into the Semi-deciduous Forest, where the mesofauna presence did not affect decomposition. Furthermore, the effect of mesofauna was stronger in the wet forests and belowground. Overall, our results suggest that, in a regional scale, both decomposers activity and the positive effect of soil mesofauna in decomposition are constrained by abiotic factors, such as moisture conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates two lanthanide compounds (La(3+) and Sm(3+)) obtained in water/ethyl alcohol solutions employing the anionic surfactant diphenyl-4-amine sulfonate (DAS) as ligand. Both sulfonates were characterized through IR, TG/DTG (O(2) and N(2)). The thermal treatment of both compounds at 1273 K under air leaves residues containing variable percentages of lanthanide oxysulfide/oxysulfate phases shown by synchrotron high-resolution XRD pattern including the Rietveld analysis. The phase distributions found in the residues evidence the differences in the relative stability of the precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them. Methods We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the movement execution in a group (N=5) of healthy subjects. Results Analysis performed on the cortical networks estimated from the group of normal and SCI patients revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs) ROIs act as ‘‘hubs’’ for the outflow of information in both groups, SCI and healthy. Results also suggest that spinal cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly in its local feature property. In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6 Hz), alpha (7-12 Hz) and beta (13-29 Hz). By taking into account all the possible pathways between different ROI couples, we were able to separate clearly the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of “activation” Ω within the cortical network during the motor task. The activation index is directly related to diffusion, a type of dynamics that underlies several biological systems including possible spreading of neuronal activation across several cortical regions. Conclusions The present study aims at demonstrating the possible applications of graph theoretical approaches in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i) cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are emphasized in the present paper to show their impact in a real application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a general scheme for generating extra cuts during the execution of a Benders decomposition algorithm is presented. These cuts are based on feasible and infeasible master problem solutions generated by means of a heuristic. This article includes general guidelines and a case study with a fixed charge network design problem. Computational tests with instances of this problem show the efficiency of the strategy. The most important aspect of the proposed ideas is their generality, which allows them to be used in virtually any Benders decomposition implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed to develop plurimetallic electrocatalysts composed of Pt, Ru, Ni, and Sn supported on C by decomposition of polymeric precursors (DPP), at a constant metal:carbon ratio of 40:60 wt.%, for application in direct ethanol fuel cell (DEFC). The obtained nanoparticles were physico-chemically characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). XRD results revealed a face-centered cubic crystalline Pt with evidence that Ni, Ru, and Sn atoms were incorporated into the Pt structure. Electrochemical characterization of the nanoparticles was accomplished by cyclic voltammetry (CV) and chronoamperometry (CA) in slightly acidic medium (0.05 mol L-1 H2SO4), in the absence and presence of ethanol. Addition of Sn to PtRuNi/C catalysts significantly shifted the ethanol and CO onset potentials toward lower values, thus increasing the catalytic activity, especially for the quaternary composition Pt64Sn15Ru13Ni8/C. Electrolysis of ethanol solutions at 0.4 V vs. RHE allowed determination of acetaldehyde and acetic acid as the main reaction products. The presence of Ru in alloys promoted formation of acetic acid as the main product of ethanol oxidation. The Pt64Sn15Ru13Ni8/C catalyst displayed the best performance for DEFC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Background: The paradox of health refers to the improvement in objective measures of health and the increase in the reported prevalence of chronic conditions. The objective of this paper is to test the paradox of health in Catalonia from 1994 to 2006. Methods: Longitudinal cross-sectional study using the Catalonia Health Interview Survey of 1994 and 2006. The approach used was the three-fold Blinder - Oaxaca decomposition, separating the part of the differential in mean visual analogue scale value (VAS) due to group differences in the predictors (prevalence effect), due to differences in the coefficients (severity effect), and an interaction term. Variables included were the VAS value, education level, labour status, marital status, all common chronic conditions over the two cross-sections, and a variable for non-common chronic conditions and other conditions. Sample weights have been applied. Results: Results show that there is an increase in mean VAS for men aged 15-44, and a decrease in mean VAS for women aged 65-74 and 75 and more. The increase in mean VAS for men aged 15-44 could be explained by a decrease in the severity effect, which offsets the increase in the prevalence effect. The decrease in mean VAS for women aged 65-74 and 75 and more could be explained by an increase in the prevalence effect, which does not offset the decrease in the severity effect. Conclusions: The results of the present analysis corroborate the paradox of health hypothesis for the population of Catalonia, and highlight the need to be careful when measuring population health over time, as well as their usefulness to detect population's perceptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Providing support for multimedia applications on low-power mobile devices remains a significant research challenge. This is primarily due to two reasons: • Portable mobile devices have modest sizes and weights, and therefore inadequate resources, low CPU processing power, reduced display capabilities, limited memory and battery lifetimes as compared to desktop and laptop systems. • On the other hand, multimedia applications tend to have distinctive QoS and processing requirementswhichmake themextremely resource-demanding. This innate conflict introduces key research challenges in the design of multimedia applications and device-level power optimization. Energy efficiency in this kind of platforms can be achieved only via a synergistic hardware and software approach. In fact, while System-on-Chips are more and more programmable thus providing functional flexibility, hardwareonly power reduction techniques cannot maintain consumption under acceptable bounds. It is well understood both in research and industry that system configuration andmanagement cannot be controlled efficiently only relying on low-level firmware and hardware drivers. In fact, at this level there is lack of information about user application activity and consequently about the impact of power management decision on QoS. Even though operating system support and integration is a requirement for effective performance and energy management, more effective and QoSsensitive power management is possible if power awareness and hardware configuration control strategies are tightly integratedwith domain-specificmiddleware services. The main objective of this PhD research has been the exploration and the integration of amiddleware-centric energymanagement with applications and operating-system. We choose to focus on the CPU-memory and the video subsystems, since they are the most power-hungry components of an embedded system. A second main objective has been the definition and implementation of software facilities (like toolkits, API, and run-time engines) in order to improve programmability and performance efficiency of such platforms. Enhancing energy efficiency and programmability ofmodernMulti-Processor System-on-Chips (MPSoCs) Consumer applications are characterized by tight time-to-market constraints and extreme cost sensitivity. The software that runs on modern embedded systems must be high performance, real time, and even more important low power. Although much progress has been made on these problems, much remains to be done. Multi-processor System-on-Chip (MPSoC) are increasingly popular platforms for high performance embedded applications. This leads to interesting challenges in software development since efficient software development is a major issue for MPSoc designers. An important step in deploying applications on multiprocessors is to allocate and schedule concurrent tasks to the processing and communication resources of the platform. The problem of allocating and scheduling precedenceconstrained tasks on processors in a distributed real-time system is NP-hard. There is a clear need for deployment technology that addresses thesemulti processing issues. This problem can be tackled by means of specific middleware which takes care of allocating and scheduling tasks on the different processing elements and which tries also to optimize the power consumption of the entire multiprocessor platform. This dissertation is an attempt to develop insight into efficient, flexible and optimalmethods for allocating and scheduling concurrent applications tomultiprocessor architectures. It is a well-known problem in literature: this kind of optimization problems are very complex even in much simplified variants, therefore most authors propose simplified models and heuristic approaches to solve it in reasonable time. Model simplification is often achieved by abstracting away platform implementation ”details”. As a result, optimization problems become more tractable, even reaching polynomial time complexity. Unfortunately, this approach creates an abstraction gap between the optimization model and the real HW-SW platform. The main issue with heuristic or, more in general, with incomplete search is that they introduce an optimality gap of unknown size. They provide very limited or no information on the distance between the best computed solution and the optimal one. The goal of this work is to address both abstraction and optimality gaps, formulating accurate models which accounts for a number of ”non-idealities” in real-life hardware platforms, developing novel mapping algorithms that deterministically find optimal solutions, and implementing software infrastructures required by developers to deploy applications for the targetMPSoC platforms. Energy Efficient LCDBacklightAutoregulation on Real-LifeMultimediaAp- plication Processor Despite the ever increasing advances in Liquid Crystal Display’s (LCD) technology, their power consumption is still one of the major limitations to the battery life of mobile appliances such as smart phones, portable media players, gaming and navigation devices. There is a clear trend towards the increase of LCD size to exploit the multimedia capabilities of portable devices that can receive and render high definition video and pictures. Multimedia applications running on these devices require LCD screen sizes of 2.2 to 3.5 inches andmore to display video sequences and pictures with the required quality. LCD power consumption is dependent on the backlight and pixel matrix driving circuits and is typically proportional to the panel area. As a result, the contribution is also likely to be considerable in future mobile appliances. To address this issue, companies are proposing low power technologies suitable for mobile applications supporting low power states and image control techniques. On the research side, several power saving schemes and algorithms can be found in literature. Some of them exploit software-only techniques to change the image content to reduce the power associated with the crystal polarization, some others are aimed at decreasing the backlight level while compensating the luminance reduction by compensating the user perceived quality degradation using pixel-by-pixel image processing algorithms. The major limitation of these techniques is that they rely on the CPU to perform pixel-based manipulations and their impact on CPU utilization and power consumption has not been assessed. This PhDdissertation shows an alternative approach that exploits in a smart and efficient way the hardware image processing unit almost integrated in every current multimedia application processors to implement a hardware assisted image compensation that allows dynamic scaling of the backlight with a negligible impact on QoS. The proposed approach overcomes CPU-intensive techniques by saving system power without requiring either a dedicated display technology or hardware modification. Thesis Overview The remainder of the thesis is organized as follows. The first part is focused on enhancing energy efficiency and programmability of modern Multi-Processor System-on-Chips (MPSoCs). Chapter 2 gives an overview about architectural trends in embedded systems, illustrating the principal features of new technologies and the key challenges still open. Chapter 3 presents a QoS-driven methodology for optimal allocation and frequency selection for MPSoCs. The methodology is based on functional simulation and full system power estimation. Chapter 4 targets allocation and scheduling of pipelined stream-oriented applications on top of distributed memory architectures with messaging support. We tackled the complexity of the problem by means of decomposition and no-good generation, and prove the increased computational efficiency of this approach with respect to traditional ones. Chapter 5 presents a cooperative framework to solve the allocation, scheduling and voltage/frequency selection problem to optimality for energyefficient MPSoCs, while in Chapter 6 applications with conditional task graph are taken into account. Finally Chapter 7 proposes a complete framework, called Cellflow, to help programmers in efficient software implementation on a real architecture, the Cell Broadband Engine processor. The second part is focused on energy efficient software techniques for LCD displays. Chapter 8 gives an overview about portable device display technologies, illustrating the principal features of LCD video systems and the key challenges still open. Chapter 9 shows several energy efficient software techniques present in literature, while Chapter 10 illustrates in details our method for saving significant power in an LCD panel. Finally, conclusions are drawn, reporting the main research contributions that have been discussed throughout this dissertation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] This paper deals with the study of some new properties of the intrinsic order graph. The intrinsic order graph is the natural graphical representation of a complex stochastic Boolean system (CSBS). A CSBS is a system depending on an arbitrarily large number n of mutually independent random Boolean variables. The intrinsic order graph displays its 2n vertices (associated to the CSBS) from top to bottom, in decreasing order of their occurrence probabilities. New relations between the intrinsic ordering and the Hamming weight (i.e., the number of 1-bits in a binary n-tuple) are derived. Further, the distribution of the weights of the 2n nodes in the intrinsic order graph is analyzed…

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]A complex stochastic Boolean system (CSBS) is a system depending on an arbitrary number n of stochastic Boolean variables. The analysis of CSBSs is mainly based on the intrinsic order: a partial order relation defined on the set f0; 1gn of binary n-tuples. The usual graphical representation for a CSBS is the intrinsic order graph: the Hasse diagram of the intrinsic order. In this paper, some new properties of the intrinsic order graph are studied. Particularly, the set and the number of its edges, the degree and neighbors of each vertex, as well as typical properties, such as the symmetry and fractal structure of this graph, are analyzed…