939 resultados para Global model
Resumo:
The incorporation of numerical weather predictions (NWP) into a flood forecasting system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and lead to a high number of false alarms. The availability of global ensemble numerical weather prediction systems through the THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a new opportunity for flood forecast. The Grid-Xinanjiang distributed hydrological model, which is based on the Xinanjiang model theory and the topographical information of each grid cell extracted from the Digital Elevation Model (DEM), is coupled with ensemble weather predictions based on the TIGGE database (CMC, CMA, ECWMF, UKMO, NCEP) for flood forecast. This paper presents a case study using the coupled flood forecasting model on the Xixian catchment (a drainage area of 8826 km2) located in Henan province, China. A probabilistic discharge is provided as the end product of flood forecast. Results show that the association of the Grid-Xinanjiang model and the TIGGE database gives a promising tool for an early warning of flood events several days ahead.
Resumo:
A global river routing scheme coupled to the ECMWF land surface model is implemented and tested within the framework of the Global Soil Wetness Project II, to evaluate the feasibility of modelling global river runoff at a daily time scale. The exercise is designed to provide benchmark river runoff predictions needed to verify the land surface model. Ten years of daily runoff produced by the HTESSEL land surface scheme is input into the TRIP2 river routing scheme in order to generate daily river runoff. These are then compared to river runoff observations from the Global Runoff Data Centre (GRDC) in order to evaluate the potential and the limitations. A notable source of inaccuracy is bias between observed and modelled discharges which is not primarily due to the modelling system but instead of to the forcing and quality of observations and seems uncorrelated to the river catchment size. A global sensitivity analysis and Generalised Likelihood Uncertainty Estimation (GLUE) uncertainty analysis are applied to the global routing model. The ground water delay parameter is identified as being the most sensitive calibration parameter. Significant uncertainties are found in results, and those due to parameterisation of the routing model are quantified. The difficulty involved in parameterising global river discharge models is discussed. Detailed river runoff simulations are shown for the river Danube, which match well observed river runoff in upstream river transects. Results show that although there are errors in runoff predictions, model results are encouraging and certainly indicative of useful runoff predictions, particularly for the purpose of verifying the land surface scheme hydrologicly. Potential of this modelling system on future applications such as river runoff forecasting and climate impact studies is highlighted. Copyright © 2009 Royal Meteorological Society.
Resumo:
Radiative forcing values have been calculated for 11 halogenated compounds which are in current use or which have been suggested as possible replacements for the chlorofluorocarbons. Absorption cross-sections measured over a range of atmospheric temperature and pressure conditions as part of a multi-laboratory programme have been used together with a narrow band radiative transfer model. We provide a “best estimate” radiative forcing taking into account the likely vertical profile of the gas in each case. The Global Warming Potential over a variety of time horizons has also been calculated where the lifetime is available. We present the first such information for 1,2-dichloroethane. For chloroform our radiative forcing is 5 times higher than the value used in previous assessments, possibly because these ignored the effect of absorption outside the 800–1200 cm−1 “window”. For several of the other compounds considered here, our forcing is between 10 and 30% lower than previous assessments. The perfluorocarbons have been found to have large global warming potentials, many times that of CFC-11, due to both strong absorption and long lifetimes. The importance of absorption features at wavenumbers below 800 cm−1 and the effect of temperature variations in absorption cross-section on the radiative forcing are also investigated.
Resumo:
In this paper ensembles of forecasts (of up to six hours) are studied from a convection-permitting model with a representation of model error due to unresolved processes. The ensemble prediction system (EPS) used is an experimental convection-permitting version of the UK Met Office’s 24- member Global and Regional Ensemble Prediction System (MOGREPS). The method of representing model error variability, which perturbs parameters within the model’s parameterisation schemes, has been modified and we investigate the impact of applying this scheme in different ways. These are: a control ensemble where all ensemble members have the same parameter values; an ensemble where the parameters are different between members, but fixed in time; and ensembles where the parameters are updated randomly every 30 or 60 min. The choice of parameters and their ranges of variability have been determined from expert opinion and parameter sensitivity tests. A case of frontal rain over the southern UK has been chosen, which has a multi-banded rainfall structure. The consequences of including model error variability in the case studied are mixed and are summarised as follows. The multiple banding, evident in the radar, is not captured for any single member. However, the single band is positioned in some members where a secondary band is present in the radar. This is found for all ensembles studied. Adding model error variability with fixed parameters in time does increase the ensemble spread for near-surface variables like wind and temperature, but can actually decrease the spread of the rainfall. Perturbing the parameters periodically throughout the forecast does not further increase the spread and exhibits “jumpiness” in the spread at times when the parameters are perturbed. Adding model error variability gives an improvement in forecast skill after the first 2–3 h of the forecast for near-surface temperature and relative humidity. For precipitation skill scores, adding model error variability has the effect of improving the skill in the first 1–2 h of the forecast, but then of reducing the skill after that. Complementary experiments were performed where the only difference between members was the set of parameter values (i.e. no initial condition variability). The resulting spread was found to be significantly less than the spread from initial condition variability alone.
Resumo:
The nature of the climate–carbon cycle feedback depends critically on the response of soil carbon to climate, including changes in moisture. However, soil moisture–carbon feedback responses have not been investigated thoroughly. Uncertainty in the response of soil carbon to soil moisture changes could arise from uncertainty in the relationship between soil moisture and heterotrophic respiration. We used twelve soil moisture–respiration functions (SMRFs) with a soil carbon model (RothC) and data from a coupled climate–carbon cycle general circulation model to investigate the impact of direct heterotrophic respiration dependence on soil moisture on the climate carbon cycle feedback. Global changes in soil moisture acted to oppose temperature‐driven decreases in soil carbon and hence tended to increase soil carbon storage. We found considerable uncertainty in soil carbon changes due to the response of soil respiration to soil moisture. The use of different SMRFs resulted in both large losses and small gains in future global soil carbon stocks, whether considering all climate forcings or only moisture changes. Regionally, the greatest range in soil carbon changes across SMRFs was found where the largest soil carbon changes occurred. Further research is needed to constrain the soil moisture–respiration relationship and thus reduce uncertainty in climate–carbon cycle feedbacks. There may also be considerable uncertainty in the regional responses of soil carbon to soil moisture changes since climate model predictions of regional soil moisture changes are less coherent than temperature changes.
Resumo:
An online national survey among the Spanish population (n = 602) was conducted to examine the factors underlying a person’s support for commitments to global climate change reductions. Multiple hierarchical regression analysis was conducted in four steps and a structural equations model was tested. A survey tool designed by the Yale Project on Climate Change Communication was applied in order to build scales for the variables introduced in the study. The results show that perceived consumer effectiveness and risk perception are determinant factors of commitment to mitigating global climate change. However, there are differences in the influence that other factors, such as socio-demographics, view of nature and cultural cognition, have on the last predicted variable.
Resumo:
We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover; composition and height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, and are compared to scores based on the temporal or spatial mean value of the observations and a "random" model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global vegetation models (DGVMs). In general, the SDBM performs better than either of the DGVMs. It reproduces independent measurements of net primary production (NPP) but underestimates the amplitude of the observed CO2 seasonal cycle. The two DGVMs show little difference for most benchmarks (including the inter-annual variability in the growth rate and seasonal cycle of atmospheric CO2), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change impacts and feedbacks.
Resumo:
A process-based fire regime model (SPITFIRE) has been developed, coupled with ecosystem dynamics in the LPJ Dynamic Global Vegetation Model, and used to explore fire regimes and the current impact of fire on the terrestrial carbon cycle and associated emissions of trace atmospheric constituents. The model estimates an average release of 2.24 Pg C yr−1 as CO2 from biomass burning during the 1980s and 1990s. Comparison with observed active fire counts shows that the model reproduces where fire occurs and can mimic broad geographic patterns in the peak fire season, although the predicted peak is 1–2 months late in some regions. Modelled fire season length is generally overestimated by about one month, but shows a realistic pattern of differences among biomes. Comparisons with remotely sensed burnt-area products indicate that the model reproduces broad geographic patterns of annual fractional burnt area over most regions, including the boreal forest, although interannual variability in the boreal zone is underestimated.
Resumo:
Version 1 of the Global Charcoal Database is now available for regional fire history reconstructions, data exploration, hypothesis testing, and evaluation of coupled climate–vegetation–fire model simulations. The charcoal database contains over 400 radiocarbon-dated records that document changes in charcoal abundance during the Late Quaternary. The aim of this public database is to stimulate cross-disciplinary research in fire sciences targeted at an increased understanding of the controls and impacts of natural and anthropogenic fire regimes on centennial-to-orbital timescales. We describe here the data standardization techniques for comparing multiple types of sedimentary charcoal records. Version 1 of the Global Charcoal Database has been used to characterize global and regional patterns in fire activity since the last glacial maximum. Recent studies using the charcoal database have explored the relation between climate and fire during periods of rapid climate change, including evidence of fire activity during the Younger Dryas Chronozone, and during the past two millennia.
Resumo:
To examine the long-term stability of Arctic and Antarctic sea ice, idealized simulations are carried out with the climate model ECHAM5/MPIOM. Atmospheric CO2 concentration is increased over 2000 years from pre-industrial levels to quadrupling, is then kept constant for 5940 years, is afterwards decreased over 2000 years to pre-industrial levels, and finally kept constant for 3940 years.Despite these very slow changes, the sea-ice response significantly lags behind the CO2 concentration change. This lag, which is caused by the ocean’s thermal inertia, implies that the sea-ice equilibrium response to increasing CO2 concentration is substantially underestimated by transient simulations. The sea-ice response to CO2 concentration change is not truly hysteretic and in principle reversible.We find no lag in the evolution of Arctic sea ice relative to changes in annual-mean northern-hemisphere surface temperature. The summer sea-ice cover changes linearly with respect to both CO2 concentration and temper...
Resumo:
The response of the six major summer monsoon systems (the North American monsoon, the northern Africa monsoon, the Asia monsoon, the northern Australasian monsoon, the South America monsoon and the southern Africa monsoon) to mid-Holocene orbital forcing has been investigated using a coupled ocean–atmosphere general circulation model (FOAM), with the focus on the distinct roles of the direct insolation forcing and oceanic feedback. The simulation result is also found to compare well with the NCAR CSM. The direct effects of the change in insolation produce an enhancement of the Northern Hemisphere monsoons and a reduction of the Southern Hemisphere monsoons. Ocean feedbacks produce a further enhancement of the northern Africa monsoon and the North American monsoon. However, ocean feedbacks appear to weaken the Asia monsoon, although the overall effect (direct insolation forcing plus ocean feedback) remains a strengthened monsoon. The impact of ocean feedbacks on the South American and southern African monsoons is relatively small, and therefore these regions, especially the South America, experienced a reduced monsoon regime compared to present. However, there is a strong ocean feedback on the northern Australian monsoon that negates the direct effects of orbital changes and results in a strengthening of austral summer monsoon precipitation in this region. A new synthesis is made for mid-Holocene paleoenvironmental records and is compared with the model simulations. Overall, model simulations produce changes in regional climates that are generally consistent with paleoenvironmental observations.
Resumo:
The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought-tolerant biomes in the tropics. These features are broadly consistent with pollen-based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought-tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low-latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial-interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate.
Resumo:
This note describes a simple procedure for removing unphysical temporal discontinuities in ERA-Interim upper stratospheric global mean temperatures in March 1985 and August 1998 that have arisen due to changes in satellite radiance data used in the assimilation. The derived temperature adjustments (offsets) are suitable for use in stratosphere-resolving chemistry-climate models that are nudged (relaxed) to ERA-Interim winds and temperatures. Simulations using a nudged version of the Canadian Middle Atmosphere Model (CMAM) show that the inclusion of the temperature adjustments produces temperature time series that are devoid of the large jumps in 1985 and 1998. Due to its strong temperature dependence, the simulated upper stratospheric ozone is also shown to vary smoothly in time, unlike in a nudged simulation without the adjustments where abrupt changes in ozone occur at the times of the temperature jumps. While the adjustments to the ERA-Interim temperatures remove significant artefacts in the nudged CMAM simulation, spurious transient effects that arise due to water vapour and persist for about 5 yr after the 1979 switch to ERA-Interim data are identified, underlining the need for caution when analysing trends in runs nudged to reanalyses.
Resumo:
Snow provides large seasonal storage of freshwater, and information about the distribution of snow mass as Snow Water Equivalent (SWE) is important for hydrological planning and detecting climate change impacts. Large regional disagreements remain between estimates from reanalyses, remote sensing and modelling. Assimilating passive microwave information improves SWE estimates in many regions but the assimilation must account for how microwave scattering depends on snow stratigraphy. Physical snow models can estimate snow stratigraphy, but users must consider the computational expense of model complexity versus acceptable errors. Using data from the National Aeronautics and Space Administration Cold Land Processes Experiment (NASA CLPX) and the Helsinki University of Technology (HUT) microwave emission model of layered snowpacks, it is shown that simulations of the brightness temperature difference between 19 GHz and 37 GHz vertically polarised microwaves are consistent with Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Special Sensor Microwave Imager (SSM/I) retrievals once known stratigraphic information is used. Simulated brightness temperature differences for an individual snow profile depend on the provided stratigraphic detail. Relative to a profile defined at the 10 cm resolution of density and temperature measurements, the error introduced by simplification to a single layer of average properties increases approximately linearly with snow mass. If this brightness temperature error is converted into SWE using a traditional retrieval method then it is equivalent to ±13 mm SWE (7% of total) at a depth of 100 cm. This error is reduced to ±5.6 mm SWE (3 % of total) for a two-layer model.