982 resultados para Gill Parasites
Resumo:
My paper discusses three different ways in which stray dogs have been intertwined with ideologies of economic and urban development in Romania. I categorize results from archival and ethnographic research under three major time periods: early socialism, late socialism, and post-socialism. During early socialism stray dogs were seen to be damaging the soviet economy by killing species that humans could also hunt, like rabbits. During late socialism, stray dogs appeared as the enemies of the communist city, and the department of urban sanitation was given orders to poison dogs with strychnine. Finally, the increasing number of stray dogs in Bucharest after the collapse of communism was seen as a direct result of former communist demolitions, and was also taken as a sign of the collapsing state. Through such examples my paper discusses how the state and particular population groups have seen dogs as parts of an unwanted and dangerous nature, rather than a species that needs to be protected. I argue that distinctions of nature and culture have served discourses of civilization and the view of Bucharest as a model socialist, and then European city. Throughout my paper I juxtapose the treatment of stray dogs with other, more “valued” urban natures like the protection of parks, the wide-spread hobby of pigeon breeding during socialist years, the most recent debate on saving the rural area of Rosia Montana from non-environmentally friendly methods of gold extraction, and the current trend of healthy eating and living.
Comparison of the stable carbon and nitrogen isotopic values of gill and white muscle tissue of fish
Resumo:
The potential use of stable carbon and nitrogen isotope ratios (d13C, d15N) of fish gills for studies on fish feeding ecology was evaluated by comparing the d13C and d15N of gill tissue with the more commonly used white muscle tissue. To account for the effect of lipid content on the d13C signatures, a study-specific lipid correction model based on C:N ratios was developed and applied to the bulk d13C data. For the majority of species in the study, we found no significant difference in d13C values between gill and muscle tissue after correction, but several species showed a small (0.3-1.4 per mil) depletion in 13C in white muscle compared to gill tissue. The average species difference in d15N between muscle and gill tissue ranged from -0.2 to 1.6 per mil for the different fish species with muscle tissue generally more enriched in 15N. The d13C values of muscle and gill were strongly linearly correlated (R**2 = 0.85) over a large isotopic range (13 per mil), suggesting that both tissues can be used to determine long-term feeding or migratory habits of fish. Muscle and gill tissue bulk d15N values were also strongly positively correlated (R**2= 0.76) but with a small difference between muscle and gill tissue. This difference indicates that the bulk d15N of the two tissue types may be influenced by different isotopic turnover rates or a different composition of amino acids.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Acknowledgements The authors would like to thank staff at Marine Scotland Science Patricia White, Rebecca McIntosh, Julia Black and Mark Fordyce for their technical assistance and invaluable feedback on the project. Thanks also go to Alex Douglas at the University of Aberdeen for his advice on data analysis and statistics. For feedback on the manuscript thanks to Lesley McEvoy and Rhiannon Inkster at the NAFC Marine Centre. The study was supported by the Marine Collaborations Forum (MarCRF) which aims to develop cross-disciplinary research between the University of Aberdeen and Marine Scotland Science. Finally, thanks are also due to Scottish Fishermen's Trust for a student support bursary.
Resumo:
Peer reviewed
Resumo:
Ocean acidification impacts fish and other marine species through increased seawater PCO2 levels (hypercapnia). Knowledge of the physiological mechanisms mediating effects in various tissues of fish is incomplete. Here we tested the effects of extracellular hypercapnia and acidosis on energy metabolism of gill and liver cells of Atlantic cod. Exposure media mimicked blood conditions in vivo, either during normo- or hypercapnia and at control or acidic extracellular pH (pHe). We determined metabolic rate and energy expenditure for protein biosynthesis, Na+/K+-ATPase and H+-ATPase and considered nutrition status by measurements of metabolic rate and protein biosynthesis in media with and without free amino acids (FAA). Addition of FAA stimulated hepatic but not branchial oxygen consumption. Normo- and hypercapnic acidosis as well as hypercapnia at control pHe depressed metabolic stimulation of hepatocytes. In gill cells, acidosis depressed respiration independent of PCO2 and FAA levels. For both cell types, depressed respiration was not correlated with the same reduction in energy allocated to protein biosynthesis or Na+/K+-ATPase. Hepatic energy expenditure for protein synthesis and Na+/K+- ATPase was even elevated at acidic compared to control pHe suggesting increased costs for ion regulation and cel- lular reorganization. Hypercapnia at control pHe strongly reduced oxygen demand of branchial Na+/K+-ATPase with a similar trend for H+-ATPase. We conclude that extracellular acidosis triggers metabolic depression in gill and metabolically stimulated liver cells. Additionally, hypercapnia itself seems to limit capacities for metabolic usage of amino acids in liver cells while it decreases the use and costs of ion regulatory ATPases in gill cells.
Resumo:
Stable d13C and d15N isotopes, diet and parasites demonstrated that the prey consumed by ninespine stickleback Pungitius pungitius in a small lake on Baffin Island changed during the summer and also revealed intraspecific variation in their ecological niche. In July, there were differences in the diets of male and female ninespine stickleback as indicated by the stable isotopes, differences corroborated by the data on diet composition and the parasite fauna. Differences suggested that the sexes occupied different habitats during spawning. During July, females utilise the shallower littoral areas consuming zooplankton and benthic organisms, while males occupy deeper areas of the littoral zone feeding mainly on pelagic zooplankton. Parasite data support these observations as males had higher infections of copepod-transmitted parasites than females. There appeared to be no segregation of resources between males and females in late August, although the diet of both male and female ninespine stickleback shifted towards more benthic organisms, compared with July. Differences in d13C isotope, diet composition and infections of co-occurring parasites demonstrated that sympatric ninespine stickleback and Arctic char Salvelinus alpinus captured in the littoral zone occupied separate niches. Ninespine stickleback preyed mainly on zooplankton and chironomids, while Arctic char consumed a greater variety of prey items, including zooplankton and larger-sized prey such as insects and ninespine stickleback. The multifaceted approach improved our understanding of the trophic ecology of ninespine stickleback in southern Baffin Island and quantified resource use and dietary overlap with Arctic char.
Resumo:
In this research, 9 species of local and introduced fishes of the Zayandehroud River in Esfahan province (in the Sarmatian region belonging to the large paleoarctic fauna) in 6 seasons (winter 2003, spring, summer, autumn and winter 2004 and summer 2005) were parasitologically studied. The local fishes included alburnoides bipunctatus, Alburnus maculatus, Aphanius vladykovi, Capoeta aculeata & Capoeta damascina & the introduced fishes included Aristichthys nobilis, Carassius auratus, Ctenopharyngodon idella and Cyprinus carpio. Upon being hunted, the fishes were transferred alive to Esfahan Aquatics Breeding Center and physiologically studied after the determination of their species and genus by identification keys Berg (30), Coad (31), Saadati (51), Abdoli (20) and Holchic (38). 32 species of parasites were totally identified as follows: 6 Protozoan species including Ichthyophthirius multifiliis, 5 Trichodina species, 2 Myxobolus species including Myxobolus cristatus & Myxobolus saidovi, 16 monogenea species including Dactylogyrus alatus. D. anchorutus, D. baueri, D. chalcalburni, D. chramuli, D. extensus, D. gracilis, D. lamellatus, D. lenkorani and D. pukher, 4 Dactylogyrus spp. 2 Gyrodactylus species, 1 species of Digenea, Diplostomum spthaceum, 4 species of Cestoda including Bothriocephallus gowkongensis, khawia armeniaca, Ligulaintestinalis. Caryophyllaeus sp. 1 Acanthocephala: Acanthocephalo rhynchoides cholodkowsky, 2 species of the crustaceans including the mature & copepodian stages of Lernaea cyprinacea & 1 sp of the genus Lamproglena. Out of all the 166 pcs of the fishes hunted in this research, 127 fishes (76.5%) were infected, and 39 fishes (23.50%) were not infected. In the fishes studied, having 14 of 32 species of the parasites identified, Capoeta aculeata displayed the most variety of infection, and having only 1 sp of the parasites. Aristichthys nobilis displayed the least variety of infection. The new findings of the research will follow: Myxobolus saidovi sp is reported for the 1st time from Iran's fresh water fishes, Alburnus maculatus and Capoeta aculeata are new hosts for M. saidovi and M. cristatus, respectively. Regarding monogenea Capoeta damascina & C. aculeata were reported as the new hosts for parasite D. pukher. The presence of D. pukher the infection of Capoeta aculeata with D. chramuli, D. lenkorani and D. gracilis in the Zayandehroud river were the 1st report. Regarding the Cestodea, Bothriocephalus gowkongensis was reported to be hosted by Aphanius Vladykovi for the 1St time in Iran.
Resumo:
Intensification of aquaculture production in Uganda is likely to result into disease out-breaks leading to economic losses to commercial fish farms and associated natural aquatic ecosystems. This survey assessed health profiles of selected commercial fish farms and adjacent natural aquatic ecosystemsto identify fish diseases and parasites affecting Nile tilapia (Oreochromis niloticus) and African catfish (Clarias gariepinus) in aquaculture systems in Uganda. Fish farms encounter disease out-breaks that cause low survival rates (0 - 30%), especially catfish hatcheries. Health management issues are not well understood by fish farmers, with some unable to detect diseased fish. Current control strategies to control aquatic pathogens include use of chemotherapeutants and antibiotics. Bacterial pathogens isolated included Flavobacterium columnare, Aeromonas sp., Edwardsiella sp., Psuedomonus sp., Steptococcus sp., Staphylococcus sp., Proteus sp., and Vibrio sp. A high occurrence of Flavobacterium columnare exists in both asymptomatic and symptomatic fish was observed. Parasites included protozoans (Ichthyopthirius multiphilis, Trichodina sp. and Icthyobodo sp.) and trematodes (Cleidodiscus sp. and Gyrodactylus sp.). Diagnosis and control of diseases and parasites in aquaculture production systems requires adoption of a regional comprehensive biosecurity strategy: the East African (EAC) region unto which this study directly contributes.
Resumo:
The protist phylum Haplosporidia comprises over 40 described species with representatives infecting a range of mollusc hosts, including several ecologically and economically significant pathogens. Continuing exploration of haplosporidian diversity has added ten new species in recent years and brought the phylogenetics of the group into somewhat clearer focus, with monophyletic Bonamia and Minchinia lineages continuing to be supported. However, the addition of new sequences to phylogenetic analyses has left the paraphyletic genus Haplosporidium’s picture less resolved. It is not clear that even two genera will be enough to accommodate the species presently drawn to the Haplosporidium regions of the haplosporidian tree. In this review, we summarize recent findings in haplosporidian diversity and phylogenetics, and provide a synthesis of our understanding of the life cycles and environmental influences on haplosporidians, with particular emphasis on the important pathogens Haplosporidium nelsoni and Bonamia ostreae. Additionally, we consider the evolution of the “microcell haplosporidian” lifestyle of Bonamia parasites, and suggest that colonization of high-density oyster host populations in relatively stable euhaline marine environments may have been an important development favoring the evolution of the microcell haplosporidian life strategy.
Resumo:
This review summarizes the research progress made over the past decade in the field of gastropod immunity resulting from investigations of the interaction between the snail Biomphalaria glabrata and its trematode parasites. A combination of integrated approaches, including cellular, genetic and comparative molecular and proteomic approaches have revealed novel molecular components involved in mediating Biomphalaria immune responses that provide insights into the nature of host-parasite compatibility and the mechanisms involved in parasite recognition and killing. The current overview emphasizes that the interaction between B. glabrata and its trematode parasites involves a complex molecular crosstalk between numerous antigens, immune receptors, effectors and anti-effector systems that are highly diverse structurally and extremely variable in expression between and within host and parasite populations. Ultimately, integration of these molecular signals will determine the outcome of a specific interaction between a B. glabrata individual and its interacting trematodes. Understanding these complex molecular interactions and identifying key factors that may be targeted to impairment of schistosome development in the snail host is crucial to generating new alternative schistosomiasis control strategies.