988 resultados para Geology, Sratigraphic -- Holocene
Resumo:
This review of late-Holocene palaeoclimatology represents the results from a PAGES/CLIVAR Intersection Panel meeting that took place in June 2006. The review is in three parts: the principal high-resolution proxy disciplines (trees, corals, ice cores and documentary evidence), emphasizing current issues in their use for climate reconstruction; the various approaches that have been adopted to combine multiple climate proxy records to provide estimates of past annual-to-decadal timescale Northern Hemisphere surface temperatures and other climate variables, such as large-scale circulation indices; and the forcing histories used in climate model simulations of the past millennium. We discuss the need to develop a framework through which current and new approaches to interpreting these proxy data may be rigorously assessed using pseudo-proxies derived from climate model runs, where the `answer' is known. The article concludes with a list of recommendations. First, more raw proxy data are required from the diverse disciplines and from more locations, as well as replication, for all proxy sources, of the basic raw measurements to improve absolute dating, and to better distinguish the proxy climate signal from noise. Second, more effort is required to improve the understanding of what individual proxies respond to, supported by more site measurements and process studies. These activities should also be mindful of the correlation structure of instrumental data, indicating which adjacent proxy records ought to be in agreement and which not. Third, large-scale climate reconstructions should be attempted using a wide variety of techniques, emphasizing those for which quantified errors can be estimated at specified timescales. Fourth, a greater use of climate model simulations is needed to guide the choice of reconstruction techniques (the pseudo-proxy concept) and possibly help determine where, given limited resources, future sampling should be concentrated.
Resumo:
Want a glimpse at past vegetation? Studying pollen and other plant remains, which are preserved for example in lake sediments or mires for thousands of years, allows us to document regional occurrences of plant species over radiocarbon-dated time series. Such vegetation reconstructions derived from optical analyses of fossil samples are inherently incomplete because they only comprise taxa that contribute sufficient amounts of pollen, spores, macrofossil or other evidences. To complement optical analyses for paleoecological inference, molecular markers applied to ancient DNA (aDNA) may help in disclosing information hitherto inaccessible to biologists. Parducci et al. (2013) targeted aDNA from sediment cores of two lakes in the Scandes Mountains with generic primers in a meta-barcoding approach. When compared to palynological records from the same cores, respective taxon lists show remarkable differences in their compositions, but also in quantitative representation and in taxonomic resolution similar to a previous study (Jørgensen et al. 2012). While not free of assumptions that need critical and robust testing, notably the question of possible contamination, this study provides thrilling prospects to improve our knowledge about past vegetation composition, but also other organismic groups, stored as a biological treasure in the ground.
Resumo:
We report on previously unknown early archaeological sites in the Bolivian lowlands, demonstrating for the first time early and middle Holocene human presence in western Amazonia. Multidisciplinary research in forest islands situated in seasonally-inundated savannahs has revealed stratified shell middens produced by human foragers as early as 10,000 years ago, making them the oldest archaeological sites in the region. The absence of stone resources and partial burial by recent alluvial sediments has meant that these kinds of deposits have, until now, remained unidentified. We conducted core sampling, archaeological excavations and an interdisciplinary study of the stratigraphy and recovered materials from three shell midden mounds. Based on multiple lines of evidence, including radiocarbon dating, sedimentary proxies (elements, steroids and black carbon), micromorphology and faunal analysis, we demonstrate the anthropogenic origin and antiquity of these sites. In a tropical and geomorphologically active landscape often considered challenging both for early human occupation and for the preservation of hunter-gatherer sites, the newly discovered shell middens provide evidence for early to middle Holocene occupation and illustrate the potential for identifying and interpreting early open-air archaeological sites in western Amazonia. The existence of early hunter-gatherer sites in the Bolivian lowlands sheds new light on the region’s past and offers a new context within which the late Holocene “Earthmovers” of the Llanos de Moxos could have emerged.
Resumo:
A lack of quantitative high resolution paleoclimate data from the Southern Hemisphere limits the ability to examine current trends within the context of long-term natural climate variability. This study presents a temperature reconstruction for southern Tasmania based on analyses of a sediment core from Duckhole Lake (43.365°S, 146.875°E). The relationship between non-destructive whole core scanning reflectance spectroscopy measurements in the visible spectrum (380–730 nm) and the instrumental temperature record (ad 1911–2000) was used to develop a calibration-in-time reflectance spectroscopy-based temperature model. Results showed that a trough in reflectance from 650 to 700 nm, which represents chlorophyll and its derivatives, was significantly correlated to annual mean temperature. A calibration model was developed (R = 0.56, p auto < 0.05, root mean squared error of prediction (RMSEP) = 0.21°C, five-year filtered data, calibration period 1911–2000) and applied down-core to reconstruct annual mean temperatures in southern Tasmania over the last c. 950 years. This indicated that temperatures were initially cool c. ad 1050, but steadily increased until the late ad 1100s. After a brief cool period in the ad 1200s, temperatures again increased. Temperatures steadily decreased during the ad 1600s and remained relatively stable until the start of the 20th century when they rapidly decreased, before increasing from ad 1960s onwards. Comparisons with high resolution temperature records from western Tasmania, New Zealand and South America revealed some similarities, but also highlighted differences in temperature variability across the mid-latitudes of the Southern Hemisphere. These are likely due to a combination of factors including the spatial variability in climate between and within regions, and differences between records that document seasonal (i.e. warm season/late summer) versus annual temperature variability. This highlights the need for further records from the mid-latitudes of the Southern Hemisphere in order to constrain past natural spatial and seasonal/annual temperature variability in the region, and to accurately identify and attribute changes to natural variability and/or anthropogenic activities.
Resumo:
Abstract. Lake Ohrid shared by the Republics of Albania and Macedonia is formed by a tectonically active graben within the south Balkans and suggested to be the oldest lake in Europe. Several studies have shown that the lake provides a valuable record of climatic and environmental changes and a distal tephrostratigraphic record of volcanic eruptions from Italy. Fault structures identified in seismic data demonstrate that sediments have also the potential to record tectonic activity in the region. Here, we provide an example of linking seismic and sedimentological information with tectonic activity and historical documents. Historical documents indicate that a major earthquake destroyed the city of Lychnidus (today: city of Ohrid) in the early 6th century AD. Multichannel seismic profiles, parametric sediment echosounder profiles, and a 10.08m long sediment record from the western part of the lake indicate a 2m thick mass wasting deposit, which is tentatively correlated with this earthquake. The mass wasting deposit is chronologically well constrained, as it directly overlays the AD472/AD 512 tephra. Moreover, radiocarbon dates and cross correlation with other sediment sequences with similar geochemical characteristics of the Holocene indicate that the mass wasting event took place prior to the onset of the Medieval Warm Period, and is attributed it to one of the known earthquakes in the region in the early 6th century AD.
Resumo:
Abstract. Lakes Prespa and Ohrid, in the Balkan region, are considered to be amongst the oldest lakes in Europe. Both lakes are hydraulically connected via karst aquifers. From Lake Ohrid, several sediment cores up to 15m long have been studied over the last few years. Here, we document the first long sediment record from nearby Lake Prespa to clarify the influence of Lake Prespa on Lake Ohrid and the environmental history of the region. Radiocarbon dating and dated tephra layers provide robust age control and indicate that the 10.5m long sediment record from Lake Prespa reaches back to 48 ka. Glacial sedimentation is characterized by low organic matter content and absence of carbonates in the sediments, which indicate oligotrophic conditions in both lakes. Holocene sedimentation is characterized by particularly high carbonate content in Lake Ohrid and by particularly high organic matter content in Lake Prespa, which indicates a shift towards more mesotrophic conditions in the latter. Long-term environmental change and short-term events, such as related to the Heinrich events during the Pleistocene or the 8.2 ka cooling event during the Holocene, are well recorded in both lakes, but are only evident in certain proxies. The comparison of the sediment cores from both lakes indicates that environmental change affects particularly the trophic state of Lake Prespa due to its lower volume and water depth.
Resumo:
Abstract. Here we present stable isotope data from three sediment records from lakes that lie along the Macedonian- Albanian border (Lake Prespa: 1 core, and Lake Ohrid: 2 cores). The records only overlap for the last 40 kyr, although the longest record contains the MIS 5/6 transition (Lake Ohrid). The sedimentary characteristics of both lakes differ significantly between the glacial and interglacial phases. At the end of MIS 6 Lake Ohrid’s water level was low (high �18Ocalcite) and, although productivity was increasing (high calcite content), the carbon supply was mainly from inorganic catchment rock sources (high �13Ccarb). During the last interglacial, calcite and TOC production and preservation increased, progressively lower �18Ocalcite suggest increase in humidity and lake levels until around 115 ka. During ca. 80 ka to 11 ka the lake records suggest cold conditions as indicated by negligible calcite precipitation and low organic matter content. In Lake Ohrid, �13Corg are complacent; in contrast, Lake Prespa shows consistently higher �13Corg suggesting a low oxidation of 13C-depleted organic matter in agreement with a general deterioration of climate conditions during the glacial. From 15 ka to the onset of the Holocene, calcite and TOC begin to increase, suggesting lake levels were probably low (high �18Ocalcite). In the Holocene (11 ka to present) enhanced productivity is manifested by high calcite and organic matter content. All three cores show an early Holocene characterised by low �18Ocalcite, apart from the very early Holocene phase in Prespa where the lowest �18Ocalcite occurs at ca. 7.5 ka, suggesting a phase of higher lake level only in (the more sensitive) Lake Prespa. From 6 ka, �18Ocalcite suggest progressive aridification, in agreement with many other records in the Mediterranean, although the uppermost sediments in one core records low �18Ocalcite which we interpret as a result of human activity. Overall, the isotope data present here confirm that these two big lakes have captured the large scale, low frequency palaeoclimate variation that is seen in Mediterranean lakes, although in detail there is much palaeoclimate information that could be gained, especially small scale, high frequency differences between this region and the Mediterranean.
Resumo:
Extensive glaciers repeatedly occupied the northern Alpine Foreland during the Pleistocene and left a strongly glacially overprinted low slope landscape. Only few islands appeared as nunataks standing above the surface of the large piedmont glacier lobes. These nunatak areas kept their original shape, manifested in steep catchments with mean slopes up to 33 . Even though not glaciated, these catchments where significantly affected by base-level changes occurring as a consequence of phases of glacier advances and retreats. Both domains, the glacially eroded and non-eroded, are therefore prone to different mechanisms and time-scales of fluvial and colluvial re-adjustment. In this study we investigate these effects by exploring the spatial distribution and magnitude of denudation in the Hörnli region of the eastern Swiss Alpine Foreland in the present Interglacial. The area represents both domains in a relatively small area with largely uniform tectonic, lithologic and climatic conditions. The differences in Holocene andscape evolution are investigated using topographic analyses and catchment-averaged denudation rates derived from 10Be concentrations in fluvial quartz sand. We find that in formerly non-glaciated, fluvially dominated catchments close hillslope-channel coupling prevails and that these catchments yield high average denudation rates of 350 mm/ka. Glacially overprinted catchments yielded catchment-wide denudation rates an order of magnitude lower. These low denudation rates are hypothesized to be the consequence of both (i) a dominance of slow hillslope processes and (ii) admixture of high concentration, pre-LGM glacial sediment. This suggests that a) a careful field investigation must accompany the denudation rate studies and b) that the concept of area-weighted cosmogenic nuclide denudation rates must be considered in light of the predominant catchment processes.
Resumo:
In this introductory paper we summarize the history and achievements of the Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO), an interdisciplinary project embedded in the International Continental Scientific Drilling Program (ICDP). The stringent multiproxy approach adopted in this research combined with radiocarbon and luminescence dating provided the opportunity to synthesize a large body of hydrologically relevant data from Laguna Potrok Aike (southern Patagonia, Argentina). At this site, lake level was high from 51 ka until the early Holocene when the Southern Hemisphere Westerlies (SHW) were located further to the north. At 9.3 ka cal. BP the SHW moved southward and over the latitude of the study area (52 degrees S) causing a pronounced negative water balance with a lake level decrease of more than 50 m. Two millennia later, the SHW diminished in intensity and lake level rose to a subsequent maximum during the Little Ice Age. Since the 20th century, a strengthening of the SHW increased the evaporative stress resulting in a more negative water balance. A comparison of our data with other hydrological fluctuations at a regional scale in south-eastern Patagonia, provides new insights and also calls for better chronologies and high-resolution records of climate variability.
Resumo:
Central Switzerland lies tectonically in an intraplate area and recurrence rates of strong earthquakes exceed the time span covered by historic chronicles. However, many lakes are present in the area that act as natural seismographs: their continuous, datable and high-resolution sediment succession allows extension of the earthquake catalogue to pre-historic times. This study reviews and compiles available data sets and results from more than 10 years of lacustrine palaeoseismological research in lakes of northern and Central Switzerland. The concept of using lacustrine mass-movement event stratigraphy to identify palaeo-earthquakes is showcased by presenting new data and results from Lake Zurich. The Late Glacial to Holocene mass-movement units in this lake document a complex history of varying tectonic and environmental impacts. Results include sedimentary evidence of three major and three minor, simultaneously triggered basin-wide lateral slope failure events interpreted as the fingerprints of palaeoseismic activity. A refined earthquake catalogue, which includes results from previous lake studies, reveals a non-uniform temporal distribution of earthquakes in northern and Central Switzerland. A higher frequency of earthquakes in the Late Glacial and Late Holocene period documents two different phases of neotectonic activity; they are interpreted to be related to isostatic post-glacial rebound and relatively recent (re-)activation of seismogenic zones, respectively. Magnitudes and epicentre reconstructions for the largest identified earthquakes provide evidence for two possible earthquake sources: (i) a source area in the region of the Alpine or Sub-Alpine Front due to release of accumulated north-west/south-east compressional stress related to an active basal thrust beneath the Aar massif; and (ii) a source area beneath the Alpine foreland due to reactivation of deep-seated strike-slip faults. Such activity has been repeatedly observed instrumentally, for example, during the most recent magnitude 4.2 and 3.5 earthquakes of February 2012, near Zug. The combined lacustrine record from northern and Central Switzerland indicates that at least one of these potential sources has been capable of producing magnitude 6.2 to 6.7 events in the past.
Resumo:
Here, we present sedimentological, trace metal, and molecular evidence for tracking bottom water redox-state conditions during the past 12,500 years in nowadays sulfidic and meromictic Lake Cadagno (Switzerland). A 10.5 m long sediment core from the lake covering the Holocene period was investigated for concentration variations of the trace metals Mn and Mo (XRF core scanning and ICP-MS measurements), and for the presence of anoxygenic phototrophic sulfur bacteria (carotenoid pigment analysis and 16S rDNA real time PCR). Our trace metal analysis documents an oxic-intermediate-sulfidic redox-transition period beginning shortly after the lake formation similar to 12.5 kyr ago. The oxic period is characterized by low sedimentary Mn and Mo concentrations, as well as by the absence of any remnants of anoxygenic phototrophic sulfur bacteria. Enhanced accumulation/preservation of Mn (up to 5.6 wt%) in the sediments indicates an intermediate, Mn-enriched oxygenation state with fluctuating redox conditions during a similar to 2300-year long transition interval between similar to 12.1 and 9.8 kyr BP. We propose that the high Mn concentrations are the result of enhanced Mn2+ leaching from the sediments during reducing conditions and subsequent rapid precipitation of Mn-(oxyhydr) oxide minerals during episodic and short-term water-column mixing events mainly due to flood-induced underflows. At 9800 +/- 130 cal yr BP, a rapid transition to fully sulfidic conditions is indicated by the marked enrichment of Mo in the sediments (up to 490 ppm), accompanied by an abrupt drop in Mn concentrations and the increase of molecular biomarkers that indicate the presence of anoxygenic photosynthetic bacteria in the water column. Persistently high Mo concentrations >80 ppm provide evidence that sulfidic conditions prevailed thereafter until modern times, without any lasting hypolimnetic ventilation and reoxygenation. Hence, Lake Cadagno with its persistently stable chemocline offers a framework to study in great temporal detail over similar to 12 kyr the development of phototrophic sulfur bacteria communities and redox processes in a sulfidic environment, possibly depicting analogous conditions in an ancient ocean. Our study underscores the value of combining sedimentological, geochemical, and microbiological approaches to characterize paleo-environmental and -redox conditions in lacustrine and marine settings.