949 resultados para Genes, Immunoglobulin Heavy Chain
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
White-tailed deer (Odocoileus virginianus) have recently emerged as a source of Mycobacterium bovis infection for cattle within North America. The objective of this study was to evaluate the antibody response of M. bovis–infected deer to crude mycobacterial antigens. Deer were experimentally inoculated with M. bovis strain 1315 either by intratonsilar instillation or by exposure to M. bovis–infected (i.e., in contact) deer. To determine the time course of the response, including the effects of antigen administration for comparative cervical skin testing, serum was collected periodically and evaluated by enzyme-linked immunosorbent assay (ELISA) for immunoglobulin (i.e., IgG heavy and light chains) reactivity to mycobacterial antigens. The reactivity to M. bovis purified protein derivative (PPDb) exceeded (P < 0.05) the reactivity to M. avium PPD (PPDa) only after in vivo administration of PPDa and PPDb for comparative cervical testing of the infected deer. The mean immunoglobulin response, as measured by ELISA, of intratonsilar-inoculated deer to a proteinase K–digested whole-cell sonicate (WCS-PK) of M. bovis strain 1315 exceeded (P < 0.05) the mean of the prechallenge responses to this antigen at approximately 1 month after inoculation and throughout the remainder of the study (i.e., ~11 months). This response also exceeded (P < 0.05) that of the uninfected deer. Although this is encouraging, further studies are necessary to validate the use of the proteinase K–digested M. bovis antigens in the antibody-based assays of tuberculosis.
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
We analyzed cerebrospinal fluid (CSF) samples from 65 consecutive children with acute lymphoblastic leukemia (ALL) treated according to two different treatment protocols (GBTLI-ALL-93 and -99) with no puncture accident for minimal residual disease (MRD) in the central nervous system (CNS). Minimal residual disease was detected by polymerase chain reaction (PCR) with homo/heteroduplex analysis using consensus primers to IgH and TCR genes. MRD in the CSF at diagnosis was detected by PCR in 46.8% of children with no puncture accident or morphological involvement. In patients treated with GBTLI-ALL-93 a significantly lower 5-year event-free survival (EFS) was demonstrated for those with CSF involvement, in univariate (p = 0.01) and multivariate (p = 0.04) analysis. This observation was not true for patients treated with the more intensive protocol GBTLI-ALL-99 (p = 0.81). These findings suggest that MRD detection in the CSF is a common event in children with ALL. Treatment intensification provided by the GBTLI-ALL-99 apparently overcomes the detrimental effect of CNS minimal residual disease at diagnosis.
Resumo:
Previous studies have suggested that gamma-aminobutyric acid-B (GABA(B)) receptor agonists effectively reduce ethanol intake. The quantification using real-time polymerase chain reaction of Gabbr1 and Gabbr2 mRNA from the prefrontal cortex, hypothalamus, hippocampus, and striatum in mice exposed to an animal model of the addiction developed in our laboratory was performed to evaluate the involvement of the GABAB receptor in ethanol consumption. We used outbred, Swiss mice exposed to a three-bottle free-choice model (water, 5% v/v ethanol, and 10% v/v ethanol) that consisted of four phases: acquisition (AC), withdrawal (W), reexposure (RE), and quinine-adulteration (AD). Based on individual ethanol intake, the mice were classified into three groups: "addicted" (A group; preference for ethanol and persistent consumption during all phases), "heavy" (H group; preference for ethanol and a reduction in ethanol intake in the AD phase compared to AC phase), and "light" (L group; preference for water during all phases). In the prefrontal cortex in the A group, we found high Gabbr1 and Gabbr2 transcription levels, with significantly higher Gabbr1 transcription levels compared with the C (ethanol-naive control mice). L, and H groups. In the hippocampus in the A group, Gabbr2 mRNA levels were significantly lower compared with the C, L, and H groups. In the striatum, we found a significant increase in Gabbr1 transcription levels compared with the C, L, and H groups. No differences in Gabbr1 or Gabbr2 transcription levels were observed in the hypothalamus among groups. In summary, Gabbr1 and Gabbr2 transcription levels were altered in cerebral areas related to drug taking only in mice behaviorally classified as "addicted" drinkers, suggesting that these genes may contribute to high and persistent ethanol consumption. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Ingestion of vegetables containing heavy metals is one of the main ways in which these elements enter the human body. Once entered, heavy metals are deposited in bone and fat tissues, overlapping noble minerals. Slowly released into the body, heavy metals can cause an array of diseases. This study aimed to investigate the concentrations of cadmium, nickel, lead, cobalt and chromium in the most frequently consumed foodstuff in the Sao Paulo State, Brazil and to compare the heavy metal contents with the permissible limits established by the Brazilian legislation. A value of intake of heavy metals in human diets was also calculated to estimate the risk to human health. Vegetable samples were collected at the Sao Paulo General Warehousing and Centers Company, and the heavy metal content was determined by atomic absorption spectrophotometry. All sampled vegetables presented average concentrations of Cd and Ni lower than the permissible limits established by the Brazilian legislation. Pb and Cr exceeded the limits in 44 % of the analyzed samples. The Brazilian legislation does not establish a permissible limit for Co contents. Regarding the consumption habit of the population in the Sao Paulo State, the daily ingestion of heavy metals was below the oral dose of reference, therefore, consumption of these vegetables can be considered safe and without risk to human health.
Resumo:
The pathogenic mechanisms involved in migraine are complex and not completely clarified. Because there is evidence for the involvement of nitric oxide (NO) in migraine pathophysiology, candidate gene approaches focusing on genes affecting the endothelial function have been studied including the genes encoding endothelial NO synthase (eNOS), inducible NO synthase (iNOS), and vascular endothelial growth factor (VEGF). However, investigations on gene-gene interactions are warranted to better elucidate the genetic basis of migraine. This study aimed at characterizing interactions among nine clinically relevant polymorphisms in eNOS (T-786C/rs2070744, the 27 bp VNTR in intron 4, the Glu298Asp/rs1799983, and two additional tagSNPs rs3918226 and rs743506), iNOS (C(-1026)A/rs2779249 and G2087A/rs2297518), and VEGF (C(-2578)A/rs699947 and G(-634)C/rs2010963) in migraine patients and control group. Genotypes were determined by real-time polymerase chain reaction using the Taqman(A (R)) allele discrimination assays or PCR and fragment separation by electrophoresis in 99 healthy women without migraine (control group) and in 150 women with migraine divided into two groups: 107 with migraine without aura and 43 with aura. The multifactor dimensionality reduction method was used to detect and characterize gene-gene interactions. We found a significant interaction between eNOS rs743506 and iNOS 2087G/A polymorphisms in migraine patients compared to control group (P < 0.05), suggesting that this combination affect the susceptibility to migraine. Further studies are needed to determine the molecular mechanisms explaining this interaction.
Resumo:
Background: The alpha-proteobacterium Caulobacter crescentus inhabits low-nutrient environments and can tolerate certain levels of heavy metals in these sites. It has been reported that C. crescentus responds to exposure to various heavy metals by altering the expression of a large number of genes. Results: In this work, we show that the ECF sigma factor sigma(F) is one of the regulatory proteins involved in the control of the transcriptional response to chromium and cadmium. Microarray experiments indicate that sigma(F) controls eight genes during chromium stress, most of which were previously described as induced by heavy metals. Surprisingly, sigma(F) itself is not strongly auto-regulated under metal stress conditions. Interestingly, sigma(F)-dependent genes are not induced in the presence of agents that generate reactive oxygen species. Promoter analyses revealed that a conserved sigma(F)-dependent sequence is located upstream of all genes of the sigma(F) regulon. In addition, we show that the second gene in the sigF operon acts as a negative regulator of sigma(F) function, and the encoded protein has been named NrsF (Negative regulator of sigma F). Substitution of two conserved cysteine residues (C131 and C181) in NrsF affects its ability to maintain the expression of sigma(F)-dependent genes at basal levels. Furthermore, we show that sigma(F) is released into the cytoplasm during chromium stress and in cells carrying point mutations in both conserved cysteines of the protein NrsF. Conclusion: A possible mechanism for induction of the sigma(F)-dependent genes by chromium and cadmium is the inactivation of the putative anti-sigma factor NrsF, leading to the release of sigma(F) to bind RNA polymerase core and drive transcription of its regulon.