962 resultados para Gastrointestinal shedding
Resumo:
Aims: To evaluate the probiotic properties of strains isolated from smoked salmon and previously identified as bacteriocin producers. Methods and Results: Strains Lactobacillus curvatus ET06, ET30 and ET31, Lactobacillus fermentum ET35, Lactobacillus delbrueckii ET32, Pediococcus acidilactici ET34 and Enterococcus faecium ET05, ET12 and ET88 survived conditions simulating the gastrointestinal tract (GIT) and produced bacteriocins active against several strains of Listeria monocytogenes, but presented very low activity against other lactic acid bacteria (LAB). Cell-free supernatants containing bacteriocins, added to 3-h-old cultures of L. monocytogenes 603, suppressed growth over 12 h. Auto-aggregation was strain-specific, and values ranged from 7 center dot 2% for ET35 to 12 center dot 1% for ET05. Various degrees of co-aggregation with L. monocytogenes 603, Lactobacillus sakei ATCC 15521 and Enterococcus faecalis ATCC 19443 were observed. Adherence of the bacteriocinogenic strains to Caco-2 cells was within the range reported for Lactobacillus rhamnosus GG, a well-known probiotic. The highest levels of hydrophobicity were recorded for Lact. curvatus (61 center dot 9-64 center dot 6%), Lact. fermentum (78 center dot 9%), Lact. delbrueckii (43 center dot 7%) and Ped. acidilactici (51 center dot 3%), which are higher than the one recorded for Lact. rhamnosus GG (53 center dot 3%). These strains were highly sensitive to several antibiotics and affected by several drugs from different generic groups in a strain-dependent manner. Conclusions: Smoked salmon is a rich source of probiotic LAB. All strains survived conditions simulating the GIT and produced bacteriocins active against various pathogens. Adherence to Caco-2 cells was within the range reported for Lact. rhamnosus GG, a well-known probiotic. In addition, the high hydrophobicity readings recorded define the strains as good probiotics. Significance and Impact of the Study: Smoked salmon contains a number of different probiotic LAB and could be marketed as having a potential beneficial effect.
Resumo:
The mechanism of uptake of anthocyanins (as well as the type) from food in the intestine is not clear. Anthocyanin-rich extract from wild mulberry, composed of cyanidin-3-glucoside (79%) and cyanidin-3-rutino side (cy-3-rut) (19%), was orally administered to Wistar rats, and their concentrations were determined in plasma, kidney, and the gastrointestinal (GI) tract. The 2 glycosylated forms showed maximum concentration at 15 minutes after oral administration, both in plasma and kidney. The cyanidin-3-glucoside and cy-3-rut were found in plasma as glucuronides, as sulfates of cyanidin, and as unchanged forms. The area under the curve of concentration vs time (AUC(0-8h)) was 2.76 +/- 0.88 mu g hour/mL and 9.74 +/- 0.75 mu g hour/g for plasma and kidney, respectively. In spite of the low absorption, the increase in plasma anthocyanin level resulted in a significant increase in antioxidant capacity (P < .05). In the GI tract (stomach and small and large intestines), cyanidin glycosides were found unchanged, but a low amount of the aglycone form was present. Anthocyanin glycosides were no longer detected in the GI tract after 8 hours of administration. In vitro fermentation showed that the 2 cyanidin glycosides were totally metabolized by the rat colonic microflora, explaining their disappearance. In addition, the 2 products of their degradation, cyanidin and protocatechuic acid, were not detected in plasma and probably do not influence plasma antioxidant capacity. As found by the everted sac model, anthocyanins were transported across the enterocyte by the sodium-dependent glucose transporter. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The Biopharmaceutics Classification System (BCS) is a tool that was created to categorize drugs into different groups according to their solubility and permeability characteristics. Through a combination of these factors and physiological parameters, it is possible to understand the absorption behavior of a drug in the gastrointestinal tract, thus contributing to cost and time reductions in drug development, as well as reducing exposure of human subjects during in vivo trials. Solubility is attained by determining the equilibrium under conditions of physiological pH, while different methods may be employed for evaluating permeability. On the other hand, the intrinsic dissolution rate (IDR), which is defined as the rate of dissolution of a pure substance under constant temperature, pH, and surface area conditions, among others, may present greater correlation to the in vivo dissolution dynamic than the solubility test. The purpose of this work is to discuss the intrinsic dissolution test as a tool for determining the solubility of drugs within the scope of the Biopharmaceutics Classification System (BCS).
Resumo:
Plectranthus barbatus Andrews (Lamiaceae) is a popular medicinal plant used to treat gastrointestinal and hepatic ailments. In this work, we assessed the antioxidant activity of the aqueous extract of P. barbatus leaves on Fe(2+)-citrate-mediated membrane lipid peroxidation in isolated rat liver mitochondria, as well in non-mitochondrial systems: DPPH reduction, (center dot)OH scavenging activity, and iron chelation by prevention of formation of the Fe(2+)-bathophenanthroline disulfonic acid (BPS) complex. Within all the tested concentrations (15-75 mu g/ml), P. barbatus extract presented significant free radical-scavenging activity (IC(50) = 35.8 +/- 0.27 mu g/ml in the DPPH: assay and IC(50) = 69.1 +/- 0.73 mu g/ml in the (center dot)OH assay) and chelated iron (IC(50) = 30.4 +/- 3.31 mu g/ml). Over the same concentration range, the plant extract protected mitochondria against Fe(2+)/citrate-mediated swelling and malondialdehyde production, a property that persisted even after simulation of its passage through the digestive tract. These effects could be attributed to the phenolic compounds, nepetoidin - caffeic acid esters, present in the extract. Therefore, P. barbatus extract prevents mitochondrial membrane lipid peroxidation, probably by chelation of iron, revealing potential applicability as a therapeutic source of molecules against diseases involving mitochondrial iron overload. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Baccharis dracunculifolia De Candole (Asteraceae), a native plant from the Brazilian ""cerrado"", is widely used in folk medicine as an anti-inflammatory agent and for the treatment of gastrointestinal diseases. B. dracunculifolia has been described as the most important plant source of propolis in southeastern Brazil, which is called green propolis due to its color. The aim of the present study was to evaluate the mutagenic and antimutagenic effects of the ethyl acetate extract of B. dracunculifolia leaves (Bd-EAE) on Chinese hamster ovary cells. On one hand, the results showed a significant increase in the frequencies of chromosome aberrations at the highest Bd-EAE concentration tested (100 mu g/mL). On the other hand, the lowest Bd-EAE concentration tested (12.5 mu/mL) significantly reduced the chromosome damage induced by the chemotherapeutic agent doxorubicin. The present results indicate that Bd-EAE has the characteristics of a so-called Janus compound, that is, Bd-EAE is mutagenic at higher concentrations, whereas it displays a chemopreventive effect on doxorubicin-induced mutagenicity at lower concentrations. The constituents of B. dracunculifolia responsible for its mutagenic and antimutagenic effects are probably flavonoids and phenylpropanoids, since these compounds can act either as pro-oxidants or as free radical scavengers depending on their concentration.
Resumo:
Baccharis dracunculifolia (Asteraceae), the main botanical source of green propolis, is a shrub of the Brazilian `cerrado`. In folk medicine it is used as an anti-inflammatory agent, mainly for the treatment of gastrointestinal diseases. The aim of the present study was to evaluate the genotoxic and antigenotoxic effects of B. dracunculifolia ethyl acetate extract (Bd-EAE) on Chinese hamster lung fibroblasts (V79 cells) by the comet assay. Methyl methanesulfonate (MMS; 200 mu M) was used as an inducer of DNA damage. Genotoxicity was evaluated using four different concentrations of Bd-EAE: 12.5, 25.0, 50.0 and 100.0 mu g ml(-1). Antigenotoxicity was assessed before, simultaneously, and after treatment with the mutagen. The results showed a significant increase in the frequency of DNA damage in cultures treated with 50.0 and 100.0 mu g ml(-1) Bd-EAE. Regarding its antigenotoxic potential, Bd-EAE reduced the frequency of DNA damage induced by MMS. However, this chemopreventive activity depended on the concentrations and treatment regimens used. The antioxidant activity of phenolic components present in Bd-EAE may contribute to reduce the alkylation damage induced by MMS. In conclusion, our findings confirmed the chemopreventive activity of Bd-EAE and showed that this effect occurs under different mechanism. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
PGE(2), an arachidonic acid metabolite produced by various type of cells regulates a broad range of physiological activities in the endocrine, cardiovascular, gastrointestinal, and immune systems, and is involved in maintaining the local homeostasis. In the immune system, PGE(2) is mainly produced by APCs and it can suppress the Th1-mediated immune responses. The aim of this study was to develop PGE(2)-loaded biodegradable MS that prolong and sustain the in vivo release of this mediator. An o/w emulsion solvent extraction-evaporation method was chosen to prepare the MS. We determined their diameters, evaluated the in vitro release of PGE(2), using enzyme immunoassay and MS uptake by peritoneal macrophages. To assess the preservation of biological activities of this mediator, we determined the effect of PGE(2) released from MS on LPS-induced TNF-alpha release by murine peritoneal macrophages. We also analyzed the effect of encapsulated PGE(2) on inflammatory mediators release from HUVECs. Finally, we studied the effect of PGE(2) released from biodegradable MS in sepsis animal model. The use of this formulation can provide an alternative strategy for treating infections, by modulating or inhibiting inflammatory responses, especially when they constitute an exacerbated profile. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to investigate the interference of a daily treatment of dexamethasone in the pulmonary cycle of Strongyloides venezuelensis infection in rats. Three principal effects were found: 1) increased alveolar hemorrhagic inflammation provoked by the passage of larvae into alveolar spaces; 2) significant decrease of eosinophil and mast cell migration to the axial septum of the lungs; and 3) impaired formation of the reticular fiber network, interfering with granuloma organization. This study showed that the use of drugs with immunomodulatory actions, such as dexamethasone, in addition to interfering with the morbidity from the pulmonary cycle of S. venezuelensis infection, may contribute to showing the mechanisms involved in its pathogenesis.
Resumo:
Intense exercise stimulates the systemic release of a variety of factors that alter neutrophil surface receptor expression and functional activity. These alterations may influence resistance to infection after intense exercise. The aim of this study was to examine the influence of exercise intensity on neutrophil receptor expression, degranulation (measured by plasma and intracellular myeloperoxidase concentrations), and respiratory burst activity. Ten well-trained male runners ran on a treadmill for 60 min at 60% [moderate-intensity exercise (MI)] and 85% maximal oxygen consumption [high-intensity exercise (HI)]. Blood was drawn immediately before and after exercise and at 1 h postexercise. Immediately after HI, the expression of the neutrophil receptor CD16 was significantly below preexercise values (P < 0.01), whereas MI significantly reduced CD35 expression below preexercise values (P < 0.05). One hour after exercise at both intensities, there was a significant decline in CD11b expression (P < 0.05) and a further decrease in CD16 expression compared with preexercise values (P < 0.01). CD16 expression was lower 1 h after HI than 1 h after MI (P < 0.01). Immediately after HI, intracellular myeloperoxidase concentration was less than preexercise values (P < 0.01), whereas plasma myeloperoxidase concentration was greater (P < 0.01), indicating that HI stimulated neutrophil degranulation. Plasma myeloperoxidase concentration was higher immediately after HI than after MI (P < 0.01). Neutrophil respiratory burst activity increased after HI (P < 0.01). In summary, both MI and HI reduced neutrophil surface receptor expression. Although CD16 expression was reduced to a greater extent after HI, this reduction did not impair neutrophil degranulation and respiratory burst activity.
Resumo:
To date, the laboratory has cloned seven unique human sulfotransferases; five aryl sulfotransferases (HAST1, HAST2, HAST3, HAST4 and HAST4v), an estrogen sulfotransferase and a dehydroepiandrosterone sulfotransferase. The cellular distribution of human aryl sulfotransferases in human hepatic and extrahepatic tissues has been determined using the techniques of hybridization histochemistry and immunohistochemistry. Human aryl sulfotransferase expression was detected in liver, epithelial cells of the gastrointestinal mucosal layer, epithelial cells lining bronchioles and in mammary duct epithelial cells. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
DNA mismatch repair is an important mechanism involved in maintaining the fidelity of genomic DNA. Defective DNA mismatch repair is implicated in a variety of gastrointestinal and other turners; however, its role in hepatocellular carcinoma (HCC) has not been assessed. Formalin-fixed, paraffin-embedded archival pathology tissues from 46 primary liver tumors were studied by microdissection and microsatellite analysis of extracted DNA to assess the degree of microsatellite instability, a marker of defective mismatch repair, and to determine the extent and timing of allelic loss of two DNA mismatch repair genes, human Mut S homologue-2 (hMSH2) and human Mut L homologue-1 (hMLH1), and the tumor suppressor genes adenomatous polyposis coli gene (APC), p53, and DPC4. Microsatellite instability was detected in 16 of the tumors (34.8%). Loss of heterozygosity at microsatellites linked to the DNA mismatch repair genes, hMSH2 and/or hMLH1, was found in 9 cases (19.6%), usually in association with microsatellite instability. Importantly, the pattern of allelic loss was uniform in 8 of these 9 tumors, suggesting that clonal loss had occurred. Moreover, loss at these loci also occurred in nonmalignant tissue adjacent to 4 of these tumors, where it was associated with marked allelic heterogeneity. There was relatively infrequent loss of APC, p53, or DPC4 loci that appeared unrelated to loss of hMSH2 or hMLH1 gene loci. Loss of heterozygosity at hMSH2 and/or hMLH1 gene loci, and the associated microsatellite instability in premalignant hepatic tissues suggests a possible causal role in hepatic carcinogenesis in a subset of hepatomas.
Resumo:
Objective: To determine beliefs and behaviours of Australian doctors regarding Helicobacter pylori. Design: Anonymous reply-paid postal survey mailed in December 1995 and again in March 1996. Subjects: All members on the mailing lists of the Gastroenterological Society of Australia Endoscopy Section (n = 397) and the Australian Society of Infectious Diseases (n = 264; those without medical qualifications were asked not to reply), and 400 general practitioners (GPs) randomly selected from the Royal Australian College of General Practitioners. Main outcome measures: Differences between specialist groups in belief in a causative association between H. pylori and peptic disease and in use of eradication therapy and pre- and post-treatment testing for H. pylori. Results: 92.6% of doctors believed H. pylori causes duodenal ulcer, with GPs significantly less likely to believe than gastroenterologists (odds ratio [OR], 0.22; 95% confidence interval [CI], 0.00-0.81). In duodenal ulcer, 93.4% of doctors believed H. pylori eradication therapy should be given, but fewer (83.4%) claimed to give it always or mostly, with GPs less likely to report giving it than gastroenterologists (OR, 0.06; 95% CI, 0.02-0.19). For non-ulcer dyspepsia, gastrointestinal surgeons were more likely than gastroenterologists to believe in a causative link with H. pylori (OR, 5.6; 95% CI, 3.0-10.7) and in a need for eradication therapy (OR, 3.6; 95% CI, 1.7-7.7). Most doctors (79.3%) believed in confirming the presence of H. pylori before eradication therapy in duodenal ulcer. Only 51.6% believed post-eradication testing necessary (45.5%), yet 79.1% reported performing it. Conclusions: Significant differences exist between specialist groups in beliefs and self-reported behaviours regarding H. pylori.
Resumo:
Human acetyl coenzyme A-dependent N-acetyltransferase (EC 2.3.1.5) (NAT) catalyzes the biotransformation of a number of arylamine and hydrazine compounds. NAT isozymes are encoded at 2 loci; one encodes NAT1, formerly known as the monomorphic form of the enzyme, while the other encodes the polymorphic NAT2, which is responsible for individual differences in the ability to acetylate certain compounds. Human epidemiological studies have suggested an association between the acetylator phenotype and particular cancers such as those of the bladder and colon. In the present study, NAT1- and NAT2-specific riboprobes were used in hybridization histochemistry studies to localize NAT1 and NAT2 mRNA sequences in formalin-fixed, paraffin-embedded human tissue sections. Expression of both NAT1 and NAT2 mRNA was observed in liver, gastrointestinal tract tissues (esophagus, stomach, small intestine, and colon), ureter, bladder, and lung. In extrahepatic tissues, NAT1 and NAT2 mRNA expression was localized to intestinal epithelial cells, urothelial cells, and the epithelial cells of the respiratory bronchioles. The observed heterogeneity of NAT1 and NAT2 mRNA expression between human tissue types may be of significance in assessing their contribution to known organ-specific toxicities of various arylamine drugs and carcinogens.
Resumo:
A wide range of peptides produced from milk proteins have been demonstrated to produce a physiological response in model systems. These peptides may be released from intact proteins in the gastrointestinal tract by proteolytic digestion, but are also present in fermented products such as cheese and yogurt, as a result of the action of inherent proteases, such as plasmin, and/or bacterial proteases released by the starter culture. This study investigated the presence of peptides, previously reported to have bioactive properties, in commercially available yogurts and cheeses.
Resumo:
A presentation and an analysis of the Islamic concept of emancipation of women as it is proposed by Bint al-Shati (1913-1998), an Egyptian specialist of Qur'anic exegesis, will illustrate her exegetical method. thereafter, some difficulties of her interpretation will be raised, shedding light on contradictions that her exegesis, which seeks to be both Islamic and modern, cannot avoid.