913 resultados para GLAUCOMA PROBABILITY SCORE
The sequential analysis of repeated binary responses: a score test for the case of three time points
Resumo:
In this paper a robust method is developed for the analysis of data consisting of repeated binary observations taken at up to three fixed time points on each subject. The primary objective is to compare outcomes at the last time point, using earlier observations to predict this for subjects with incomplete records. A score test is derived. The method is developed for application to sequential clinical trials, as at interim analyses there will be many incomplete records occurring in non-informative patterns. Motivation for the methodology comes from experience with clinical trials in stroke and head injury, and data from one such trial is used to illustrate the approach. Extensions to more than three time points and to allow for stratification are discussed. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
A score test is developed for binary clinical trial data, which incorporates patient non-compliance while respecting randomization. It is assumed in this paper that compliance is all-or-nothing, in the sense that a patient either accepts all of the treatment assigned as specified in the protocol, or none of it. Direct analytic comparisons of the adjusted test statistic for both the score test and the likelihood ratio test are made with the corresponding test statistics that adhere to the intention-to-treat principle. It is shown that no gain in power is possible over the intention-to-treat analysis, by adjusting for patient non-compliance. Sample size formulae are derived and simulation studies are used to demonstrate that the sample size approximation holds. Copyright © 2003 John Wiley & Sons, Ltd.
Resumo:
The jackknife method is often used for variance estimation in sample surveys but has only been developed for a limited class of sampling designs.We propose a jackknife variance estimator which is defined for any without-replacement unequal probability sampling design. We demonstrate design consistency of this estimator for a broad class of point estimators. A Monte Carlo study shows how the proposed estimator may improve on existing estimators.
Resumo:
Imputation is commonly used to compensate for item non-response in sample surveys. If we treat the imputed values as if they are true values, and then compute the variance estimates by using standard methods, such as the jackknife, we can seriously underestimate the true variances. We propose a modified jackknife variance estimator which is defined for any without-replacement unequal probability sampling design in the presence of imputation and non-negligible sampling fraction. Mean, ratio and random-imputation methods will be considered. The practical advantage of the method proposed is its breadth of applicability.
Resumo:
Individual identification via DNA profiling is important in molecular ecology, particularly in the case of noninvasive sampling. A key quantity in determining the number of loci required is the probability of identity (PIave), the probability of observing two copies of any profile in the population. Previously this has been calculated assuming no inbreeding or population structure. Here we introduce formulae that account for these factors, whilst also accounting for relatedness structure in the population. These formulae are implemented in API-CALC 1.0, which calculates PIave for either a specified value, or a range of values, for F-IS and F-ST.
Resumo:
This paper presents an efficient construction algorithm for obtaining sparse kernel density estimates based on a regression approach that directly optimizes model generalization capability. Computational efficiency of the density construction is ensured using an orthogonal forward regression, and the algorithm incrementally minimizes the leave-one-out test score. A local regularization method is incorporated naturally into the density construction process to further enforce sparsity. An additional advantage of the proposed algorithm is that it is fully automatic and the user is not required to specify any criterion to terminate the density construction procedure. This is in contrast to an existing state-of-art kernel density estimation method using the support vector machine (SVM), where the user is required to specify some critical algorithm parameter. Several examples are included to demonstrate the ability of the proposed algorithm to effectively construct a very sparse kernel density estimate with comparable accuracy to that of the full sample optimized Parzen window density estimate. Our experimental results also demonstrate that the proposed algorithm compares favorably with the SVM method, in terms of both test accuracy and sparsity, for constructing kernel density estimates.
Resumo:
There is growing interest, especially for trials in stroke, in combining multiple endpoints in a single clinical evaluation of an experimental treatment. The endpoints might be repeated evaluations of the same characteristic or alternative measures of progress on different scales. Often they will be binary or ordinal, and those are the cases studied here. In this paper we take a direct approach to combining the univariate score statistics for comparing treatments with respect to each endpoint. The correlations between the score statistics are derived and used to allow a valid combined score test to be applied. A sample size formula is deduced and application in sequential designs is discussed. The method is compared with an alternative approach based on generalized estimating equations in an illustrative analysis and replicated simulations, and the advantages and disadvantages of the two approaches are discussed.
Resumo:
In the forecasting of binary events, verification measures that are “equitable” were defined by Gandin and Murphy to satisfy two requirements: 1) they award all random forecasting systems, including those that always issue the same forecast, the same expected score (typically zero), and 2) they are expressible as the linear weighted sum of the elements of the contingency table, where the weights are independent of the entries in the table, apart from the base rate. The authors demonstrate that the widely used “equitable threat score” (ETS), as well as numerous others, satisfies neither of these requirements and only satisfies the first requirement in the limit of an infinite sample size. Such measures are referred to as “asymptotically equitable.” In the case of ETS, the expected score of a random forecasting system is always positive and only falls below 0.01 when the number of samples is greater than around 30. Two other asymptotically equitable measures are the odds ratio skill score and the symmetric extreme dependency score, which are more strongly inequitable than ETS, particularly for rare events; for example, when the base rate is 2% and the sample size is 1000, random but unbiased forecasting systems yield an expected score of around −0.5, reducing in magnitude to −0.01 or smaller only for sample sizes exceeding 25 000. This presents a problem since these nonlinear measures have other desirable properties, in particular being reliable indicators of skill for rare events (provided that the sample size is large enough). A potential way to reconcile these properties with equitability is to recognize that Gandin and Murphy’s two requirements are independent, and the second can be safely discarded without losing the key advantages of equitability that are embodied in the first. This enables inequitable and asymptotically equitable measures to be scaled to make them equitable, while retaining their nonlinearity and other properties such as being reliable indicators of skill for rare events. It also opens up the possibility of designing new equitable verification measures.
Resumo:
A generalized or tunable-kernel model is proposed for probability density function estimation based on an orthogonal forward regression procedure. Each stage of the density estimation process determines a tunable kernel, namely, its center vector and diagonal covariance matrix, by minimizing a leave-one-out test criterion. The kernel mixing weights of the constructed sparse density estimate are finally updated using the multiplicative nonnegative quadratic programming algorithm to ensure the nonnegative and unity constraints, and this weight-updating process additionally has the desired ability to further reduce the model size. The proposed tunable-kernel model has advantages, in terms of model generalization capability and model sparsity, over the standard fixed-kernel model that restricts kernel centers to the training data points and employs a single common kernel variance for every kernel. On the other hand, it does not optimize all the model parameters together and thus avoids the problems of high-dimensional ill-conditioned nonlinear optimization associated with the conventional finite mixture model. Several examples are included to demonstrate the ability of the proposed novel tunable-kernel model to effectively construct a very compact density estimate accurately.
Resumo:
A two-locus match probability is presented that incorporates the effects of within-subpopulation inbreeding (consanguinity) in addition to population subdivision. The usual practice of calculating multi-locus match probabilities as the product of single-locus probabilities assumes independence between loci. There are a number of population genetics phenomena that can violate this assumption: in addition to consanguinity, which increases homozygosity at all loci simultaneously, gametic disequilibrium will introduce dependence into DNA profiles. However, in forensics the latter problem is usually addressed in part by the careful choice of unlinked loci. Hence, as is conventional, we assume gametic equilibrium here, and focus instead on between-locus dependence due to consanguinity. The resulting match probability formulae are an extension of existing methods in the literature, and are shown to be more conservative than these methods in the case of double homozygote matches. For two-locus profiles involving one or more heterozygous genotypes, results are similar to, or smaller than, the existing approaches.
Resumo:
A new sparse kernel probability density function (pdf) estimator based on zero-norm constraint is constructed using the classical Parzen window (PW) estimate as the target function. The so-called zero-norm of the parameters is used in order to achieve enhanced model sparsity, and it is suggested to minimize an approximate function of the zero-norm. It is shown that under certain condition, the kernel weights of the proposed pdf estimator based on the zero-norm approximation can be updated using the multiplicative nonnegative quadratic programming algorithm. Numerical examples are employed to demonstrate the efficacy of the proposed approach.
Resumo:
Recent research has suggested that relatively cold UK winters are more common when solar activity is low (Lockwood et al 2010 Environ. Res. Lett. 5 024001). Solar activity during the current sunspot minimum has fallen to levels unknown since the start of the 20th century (Lockwood 2010 Proc. R. Soc. A 466 303–29) and records of past solar variations inferred from cosmogenic isotopes (Abreu et al 2008 Geophys. Res. Lett. 35 L20109) and geomagnetic activity data (Lockwood et al 2009 Astrophys. J. 700 937–44) suggest that the current grand solar maximum is coming to an end and hence that solar activity can be expected to continue to decline. Combining cosmogenic isotope data with the long record of temperatures measured in central England, we estimate how solar change could influence the probability in the future of further UK winters that are cold, relative to the hemispheric mean temperature, if all other factors remain constant. Global warming is taken into account only through the detrending using mean hemispheric temperatures. We show that some predictive skill may be obtained by including the solar effect.