975 resultados para Fructose-1,6-bisphosphate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lowe syndrome is an X-linked disorder that has a complex phenotype that includes progressive renal failure and blindness. The disease is caused by mutations in an inositol polyphosphate 5-phosphatase designated OCRL. It has been shown that the OCRL protein is found on the surface of lysosomes and that a renal tubular cell line deficient in OCRL accumulated substrate phosphatidylinositol 4,5-bisphosphate. Because this lipid is required for vesicle trafficking from lysosomes, we postulate that there is a defect in lysosomal enzyme trafficking in patients with Lowe syndrome that leads to increased extracellular lysosomal enzymes and might lead to tissue damage and contribute to the pathogenesis of the disease. We have measured seven lysosomal enzymes in the plasma of 15 patients with Lowe syndrome and 15 age-matched male controls. We find a 1.6- to 2.0-fold increase in all of the enzymes measured. When the data was analyzed by quintiles of activity for all of the enzymes, we found that 95% of values in the lowest quintile come from normal subjects whereas in the highest quintile 85% of the values are from patients with Lowe syndrome. The increased enzyme levels are not attributable to renal insufficiency because there was no difference in enzyme activity in the four patients with the highest creatinine levels compared with the six patients with the lowest creatinine values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insolubility of full-length HIV-1 integrase (IN) limited previous structure analyses to individual domains. By introducing five point mutations, we engineered a more soluble IN that allowed us to generate multidomain HIV-1 IN crystals. The first multidomain HIV-1 IN structure is reported. It incorporates the catalytic core and C-terminal domains (residues 52–288). The structure resolved to 2.8 Å is a Y-shaped dimer. Within the dimer, the catalytic core domains form the only dimer interface, and the C-terminal domains are located 55 Å apart. A 26-aa α-helix, α6, links the C-terminal domain to the catalytic core. A kink in one of the two α6 helices occurs near a known proteolytic site, suggesting that it may act as a flexible elbow to reorient the domains during the integration process. Two proteins that bind DNA in a sequence-independent manner are structurally homologous to the HIV-1 IN C-terminal domain, suggesting a similar protein–DNA interaction in which the IN C-terminal domain may serve to bind, bend, and orient viral DNA during integration. A strip of positively charged amino acids contributed by both monomers emerges from each active site of the dimer, suggesting a minimally dimeric platform for binding each viral DNA end. The crystal structure of the isolated catalytic core domain (residues 52–210), independently determined at 1.6-Å resolution, is identical to the core domain within the two-domain 52–288 structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclic β-(1→3),β-(1→6)-d-glucan synthesis locus of Bradyrhizobium japonicum is composed of at least two genes, ndvB and ndvC. Mutation in either gene affects glucan synthesis, as well as the ability of the bacterium to establish a successful symbiotic interaction with the legume host soybean (Glycine max). B. japonicum strain AB-14 (ndvB::Tn5) does not synthesize β-glucans, and strain AB-1 (ndvC::Tn5) synthesizes a cyclic β-glucan lacking β-(1→6)-glycosidic bonds. We determined that the structure of the glucan synthesized by strain AB-1 is cyclodecakis-(1→3)-β-d-glucosyl, a cyclic β-(1→3)-linked decasaccharide in which one of the residues is substituted in the 6 position with β-laminaribiose. Cyclodecakis-(1→3)-β-d-glucosyl did not suppress the fungal β-glucan-induced plant defense response in soybean cotyledons and had much lower affinity for the putative membrane receptor protein than cyclic β-(1→3),β-(1→6)-glucans produced by wild-type B. japonicum. This is consistent with the hypothesis presented previously that the wild-type cyclic β-glucans may function as suppressors of a host defense response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term exposure of plants to elevated partial pressures of CO2 (pCO2) often depresses photosynthetic capacity. The mechanistic basis for this photosynthetic acclimation may involve accumulation of carbohydrate and may be promoted by nutrient limitation. However, our current knowledge is inadequate for making reliable predictions concerning the onset and extent of acclimation. Many studies have sought to investigate the effects of N supply but the methodologies used generally do not allow separation of the direct effects of limited N availability from those caused by a N dilution effect due to accelerated growth at elevated pCO2. To dissociate these interactions, wheat (Triticum aestivum L.) was grown hydroponically and N was added in direct proportion to plant growth. Photosynthesis did not acclimate to elevated pCO2 even when growth was restricted by a low-N relative addition rate. Ribulose-1, 5-bisphosphate carboxylase/oxygenase activity and quantity were maintained, there was no evidence for triose phosphate limitation of photosynthesis, and tissue N content remained within the range recorded for healthy wheat plants. In contrast, wheat grown in sand culture with N supplied at a fixed concentration suffered photosynthetic acclimation at elevated pCO2 in a low-N treatment. This was accompanied by a significant reduction in the quantity of active ribulose-1, 5-bisphosphate carboxylase/oxygenase and leaf N content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies of photosynthetic acclimation to elevated CO2 have focused on the most recently expanded, sunlit leaves in the canopy. We examined acclimation in a vertical profile of leaves through a canopy of wheat (Triticum aestivum L.). The crop was grown at an elevated CO2 partial pressure of 55 Pa within a replicated field experiment using free-air CO2 enrichment. Gas exchange was used to estimate in vivo carboxylation capacity and the maximum rate of ribulose-1,5-bisphosphate-limited photosynthesis. Net photosynthetic CO2 uptake was measured for leaves in situ within the canopy. Leaf contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), light-harvesting-complex (LHC) proteins, and total N were determined. Elevated CO2 did not affect carboxylation capacity in the most recently expanded leaves but led to a decrease in lower, shaded leaves during grain development. Despite this acclimation, in situ photosynthetic CO2 uptake remained higher under elevated CO2. Acclimation at elevated CO2 was accompanied by decreases in both Rubisco and total leaf N contents and an increase in LHC content. Elevated CO2 led to a larger increase in LHC/Rubisco in lower canopy leaves than in the uppermost leaf. Acclimation of leaf photosynthesis to elevated CO2 therefore depended on both vertical position within the canopy and the developmental stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three light-regulated genes, chlorophyll a/b-binding protein (CAB), ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit, and chalcone synthase (CHS), are demonstrated to be up-regulated in the high-pigment-1 (hp-1) mutant of tomato (Lycopersicon esculentum Mill.) compared with wild type (WT). However, the pattern of up-regulation of the three genes depends on the light conditions, stage of development, and tissue studied. Compared with WT, the hp-1 mutant showed higher CAB gene expression in the dark after a single red-light pulse and in the pericarp of immature fruits. However, in vegetative tissues of light-grown seedlings and adult plants, CAB mRNA accumulation did not differ between WT and the hp-1 mutant. The ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit mRNA accumulated to a higher level in the hp-1 mutant than WT under all light conditions and tissues studied, whereas CHS gene expression was up-regulated in de-etiolated vegetative hp-1-mutant tissues only. The CAB and CHS genes were shown to be phytochrome regulated and both phytochrome A and B1 play a role in CAB gene expression. These observations support the hypothesis that the HP-1 protein plays a general repressive role in phytochrome signal transduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possible involvement of potato (Solanum tuberosum L.) starch-branching enzyme I (PSBE-I) in the in vivo synthesis of phosphorylated amylopectin was investigated in in vitro experiments with isolated PSBE-I using 33P-labeled phosphorylated and 3H end-labeled nonphosphorylated α(1→4)glucans as the substrates. From these radiolabeled substrates PSBE-I was shown to catalyze the formation of dual-labeled (3H/33P) phosphorylated branched polysaccharides with an average degree of polymerization of 80 to 85. The relatively high molecular mass indicated that the product was the result of multiple chain-transfer reactions. The presence of α(1→6) branch points was documented by isoamylase treatment and anion-exchange chromatography. Although the initial steps of the in vivo mechanism responsible for phosphorylation of potato starch remains elusive, the present study demonstrates that the enzyme machinery available in potato has the ability to incorporate phosphorylated α(1→4)glucans into neutral polysaccharides in an interchain catalytic reaction. Potato mini tubers synthesized phosphorylated starch from exogenously supplied 33PO43− and [U-14C]Glc at rates 4 times higher than those previously obtained using tubers from fully grown potato plants. This system was more reproducible compared with soil-grown tubers and was therefore used for preparation of 33P-labeled phosphorylated α(1→4)glucan chains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intercellular distribution of the enzymes and metabolites of assimilatory sulfate reduction and glutathione synthesis was analyzed in maize (Zea mays L. cv LG 9) leaves. Mesophyll cells and strands of bundle-sheath cells from second leaves of 11-d-old maize seedlings were obtained by two different mechanical-isolation methods. Cross-contamination of cell preparations was determined using ribulose bisphosphate carboxylase (EC 4.1.1.39) and nitrate reductase (EC 1.6.6.1) as marker enzymes for bundle-sheath and mesophyll cells, respectively. ATP sulfurylase (EC 2.7.7.4) and adenosine 5′-phosphosulfate sulfotransferase activities were detected almost exclusively in the bundle-sheath cells, whereas GSH synthetase (EC 6.3.2.3) and cyst(e)ine, γ-glutamylcysteine, and glutathione were located predominantly in the mesophyll cells. Feeding experiments using [35S]sulfate with intact leaves indicated that cyst(e)ine was the transport metabolite of reduced sulfur from bundle-sheath to mesophyll cells. This result was corroborated by tracer experiments, which showed that isolated bundle-sheath strands fed with [35S]sulfate secreted radioactive cyst(e)ine as the sole thiol into the resuspending medium. The results presented in this paper show that assimilatory sulfate reduction is restricted to the bundle-sheath cells, whereas the formation of glutathione takes place predominantly in the mesophyll cells, with cyst(e)ine functioning as a transport metabolite between the two cell types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the interactions between cytokinin, sugar repression, and light in the senescence-related decline in photosynthetic enzymes of leaves. In transgenic tobacco (Nicotiana tabacum) plants that induce the production of cytokinin in senescing tissue, the age-dependent decline in NADH-dependent hydroxypyruvate reductase (HPR), ribulose-1,5-bisphosphate carboxylase/oxygenase, and other enzymes involved in photosynthetic metabolism was delayed but not prevented. Glucose (Glc) and fructose contents increased with leaf age in wild-type tobacco and, to a greater extent, in transgenic tobacco. To study whether sugar accumulation in senescing leaves can counteract the effect of cytokinin on senescence, discs of wild-type leaves were incubated with Glc and cytokinin solutions. The photorespiratory enzyme HPR declined rapidly in the presence of 20 mm Glc, especially at very low photon flux density. Although HPR protein was increased in the presence of cytokinin, cytokinin did not prevent the Glc-dependent decline. Illumination at moderate photon flux density resulted in the rapid synthesis of HPR and partially prevented the negative effect of Glc. Similar results were obtained for the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase. It is concluded that sugars, cytokinin, and light interact during senescence by influencing the decline in proteins involved in photosynthetic metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Production of infectious human immunodeficiency virus (HIV) requires proper polyprotein processing by the dimeric viral protease. The trans-dominant inhibitory activity of a defective protease monomer with the active site Asp-25 changed to Asn was measured by transient transfection. A proviral plasmid that included the drug-selectable Escherichia coli gpt gene was used to deliver the wild-type (wt) or mutant proteases to cultured cells. Coexpression of the wt proviral DNA (HIV-gpt) with increasing amounts of the mutant proviral DNA (HIV-gpt D25N) results in a concomitant decrease in proteolytic activity monitored by in vivo viral polyprotein processing. The viral particles resulting from inactivation of the protease were mostly immature, consisting predominantly of unprocessed p55gag and p160gag-pol polyproteins. In the presence of HIV-1 gp160 env, the number of secreted noninfectious particles correlated with the presence of increasing amounts of the defective protease. Greater than 97% reduction in infectivity was observed at a 1:6 ratio of wt to defective protease DNA. This provides an estimate of the level of inhibition required for effectively preventing virion processing. Stable expression of the defective protease in monkey cells reduced the yield of infectious particles from these cells by 90% upon transfection with the wt proviral DNA. These results show that defective subunits of the viral protease exert a trans-dominant inhibitory effect resulting from the formation of catalytically compromised heterodimers in vivo, ultimately yielding noninfectious viral particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steroidogenic acute regulatory protein (StAR) appears to mediate the rapid increase in pregnenolone synthesis stimulated by tropic hormones. cDNAs encoding StAR were isolated from a human adrenal cortex library. Human StAR, coexpressed in COS-1 cells with cytochrome P450scc and adrenodoxin, increased pregnenolone synthesis > 4-fold. A major StAR transcript of 1.6 kb and less abundant transcripts of 4.4 and 7.5 kb were detected in ovary and testis. Kidney had a lower amount of the 1.6-kb message. StAR mRNA was not detected in other tissues including placenta. Treatment of granulosa cells with 8-bromo-adenosine 3',5'-cyclic monophosphate for 24 hr increased StAR mRNA 3-fold or more. The structural gene encoding StAR was mapped using somatic cell hybrid mapping panels to chromosome 8p. Fluorescence in situ hybridization placed the StAR locus in the region 8p11.2. A StAR pseudogene was mapped to chromosome 13. We conclude that StAR expression is restricted to tissues that carry out mitochondrial sterol oxidations subject to acute regulation by cAMP and that StAR mRNA levels are regulated by cAMP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lowe syndrome, also known as oculocerebrorenal syndrome, is caused by mutations in the X chromosome-encoded OCRL gene. The OCRL protein is 51% identical to inositol polyphosphate 5-phosphatase II (5-phosphatase II) from human platelets over a span of 744 aa, suggesting that OCRL may be a similar enzyme. We engineered a construct of the OCRL cDNA that encodes amino acids homologous to the platelet 5-phosphatase for expression in baculovirus-infected Sf9 insect cells. This cDNA encodes aa 264-968 of the OCRL protein. The recombinant protein was found to catalyze the reactions also carried out by platelet 5-phosphatase II. Thus OCRL converts inositol 1,4,5-trisphosphate to inositol 1,4-bisphosphate, and it converts inositol 1,3,4,5-tetrakisphosphate to inositol 1,3,4-trisphosphate. Most important, the enzyme converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 4-phosphate. The relative ability of OCRL to catalyze the three reactions is different from that of 5-phosphatase II and from that of another 5-phosphatase isoenzyme from platelets, 5-phosphatase I. The recombinant OCRL protein hydrolyzes the phospholipid substrate 10- to 30-fold better than 5-phosphatase II, and 5-phosphatase I does not cleave the lipid at all. We also show that OCRL functions as a phosphatidylinositol 4,5-bisphosphate 5-phosphatase in OCRL-expressing Sf9 cells. These results suggest that OCRL is mainly a lipid phosphatase that may control cellular levels of a critical metabolite, phosphatidylinositol 4,5-bisphosphate. Deficiency of this enzyme apparently causes the protean manifestations of Lowe syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During my PhD course, I focused my research on antimicrobial peptides (AMPs), in particular on the aspects of their computational design and development. This work led to the development of a new family of AMPs that I designed, starting from the amino acid sequence of a snake venom toxin, the cardiotoxin 1 (CTX-1) of Naja atra. Naja atra atra cardiotoxin 1, produced by Chinese cobra snakes belonging to Elapidae family, is included in the three-finger toxin family and exerts high cytotoxicity and antimicrobial activity too. This toxin family is characterized by specific folding of three beta-sheet loops (“fingers”) extending from the central core and by four conserved disulfide bridges. Using as template the first loop of this toxin, different sequences of 20 amino acids linear cationic peptides have been designed in order to avoid toxic effects but to maintain and strengthen the antimicrobial activity. As a result, the sequence NCP-0 (Naja Cardiotoxin Peptide-0) was designed as ancestor and subsequently other 4 variant sequences of NCP0 were developed. These variant sequences have shown microbicidal activity towards a panel of reference strains of Gram-positive and Gram-negative bacteria, fungi and an enveloped virus. In particular, the sequence designed as NCP-3 (Naja Cardiotoxin Peptide-3) and its variants NCP-3a and NCP-3b have shown the best antimicrobial activity together with low cytotoxicity against eukaryotic cells and low hemolytic activity. Bactericidal activity has been demonstrated by minimum bactericidal concentration (MBC) assay at values below 10 μg/ml for Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii ( clinical isolates), Moraxella catharralis ATCC 25238, MRSA ATCC 43400, while towards Staphylococcus aureus ATCC 25923, Enterococcus hirae ATCC 10541 and Streptococcus agalactiae ATCC 13813 the bactericidal activity was demonstrated even below 1.6 μg/ml concentration. This potent antimicrobial activity was confirmed even for unicellular fungi Candida albicans, Candida glabrata and Malassezia pachydermatis (MBC 32.26-6.4 μg/ml), and also against the fast-growing mycobacteria Mycobacterium smegmatis DSMZ 43756 and Mycobacterium fortuitum DSMZ 46621 (MBC 100 μg/ml). Moreover, NCP-3 has shown a virucidal activity on the enveloped virus Bovine Herpesvirus 1 (BoHV1) belonging to herpesviridae family. The bactericidal activity is maintained in a high salt concentration (125 and 250 mM NaCl) medium and PB +20% Mueller Hinton Medium for E. coli, MRSA and Pseudomonas aeruginosa reference strains. Considering these in vitro obtained data, we propose NCP-3 and its variants NCP-3a and NCP-3b as promising antimicrobial candidates. For this reason, the whole novel AMPs family has been protected by a national patent (n°102015000015951).