998 resultados para Frequency meters


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mid-frequency active (MFA) sonar emits pulses of sound from an underwater transmitter to help determine the size, distance, and speed of objects. The sound waves bounce off objects and reflect back to underwater acoustic receivers as an echo. MFA sonar has been used since World War II, and the Navy indicates it is the only reliable way to track submarines, especially more recently designed submarines that operate more quietly, making them more difficult to detect. Scientists have asserted that sonar may harm certain marine mammals under certain conditions, especially beaked whales. Depending on the exposure, they believe that sonar may damage the ears of the mammals, causing hemorrhaging and/or disorientation. The Navy agrees that the sonar may harm some marine mammals, but says it has taken protective measures so that animals are not harmed. MFA training must comply with a variety of environmental laws, unless an exemption is granted by the appropriate authority. Marine mammals are protected under the Marine Mammal Protection Act (MMPA) and some under the Endangered Species Act (ESA). The training program must also comply with the National Environmental Policy Act (NEPA), and in some cases the Coastal Zone Management Act (CZMA). Each of these laws provides some exemption for certain federal actions. The Navy has invoked all of the exemptions to continue its sonar training exercises. Litigation challenging the MFA training off the coast of Southern California ended with a November 2008 U.S. Supreme Court decision. The Supreme Court said that the lower court had improperly favored the possibility of injuring marine animals over the importance of military readiness. The Supreme Court’s ruling allowed the training to continue without the limitations imposed on it by other courts. (pdf contains 20pp.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the summer of 1997, we surveyed 50 waterbodies in Washington State to determine the distribution of the aquatic weevil Euhrychiopsis lecontei Dietz. We collected data on water quality and the frequency of occurrence of watermilfoil species within selected watermilfoil beds to compare the waterbodies and determine if they were related to the distribution E. lecontei . We found E. lecontei in 14 waterbodies, most of which were in eastern Washington. Only one lake with weevils was located in western Washington. Weevils were associated with both Eurasian ( Myriophyllum spicatum L.) and northern watermilfoil ( M. sibiricum K.). Waterbodies with E. lecontei had significantly higher ( P < 0.05) pH (8.7 ± 0.2) (mean ± 2SE), specific conductance (0.3 ± 0.08 mS cm -1 ) and total alkalinity (132.4 ± 30.8 mg CaCO 3 L -1 ). We also found that weevil presence was related to surface water temperature and waterbody location ( = 24.3, P ≤ 0.001) and of all the models tested, this model provided the best fit (Hosmer- Lemeshow goodness-of-fit = 4.0, P = 0.9). Our results suggest that in Washington State E. lecontei occurs primarily in eastern Washington in waterbodies with pH ≥ 8.2 and specific conductance ≥ 0.2 mS cm -1 . Furthermore, weevil distribution appears to be correlated with waterbody location (eastern versus western Washington) and surface water temperature.