940 resultados para Forensic human identification
Resumo:
A case of sustained combustion of a human body that occurred in 2006 in Geneva, Switzerland, is presented. The body of a man was discovered at home and found to have been almost completely incinerated between the knees and the mid-chest, with less damage to the head, arms, lower legs and feet. His dog was also found dead just behind the house door. The external source of ignition was most likely a cigarette or a cigar. The chair in which the man had been sitting was largely consumed while other objects in the room exhibited only a brown oily or greasy coating and were virtually undamaged. Toxicological analyses carried out on the blood from the lower legs showed low levels of desalkylflurazepam. Alcohol concentration was 1.10 per thousand, carboxyhaemoglobin levels were 12% and cyanide concentration was 0.05 mg/L. Toxicological analyses carried out on the dog's blood showed carboxyhaemoglobin levels at 65%.
Resumo:
RESUME La télomérase confère une durée de vie illimitée et est réactivée dans la plupart des cellules tumorales. Sa sous-unité catalytique hTERT est définie comme le facteur limitant pour son activation. De l'identification de facteurs liant la région régulatrice d'hTERT, au rôle de la méthylation de l'ADN et de la modification des histones, de nombreux modèles de régulation ont été suggérés. Cependant, aucun de ces modèles n'a pu expliquer l'inactivation de la télomérase dans la plupart des cellules somatiques et sa réactivation dans la majorité des cellules tumorales. De plus, les observations contradictoires entre le faible niveau d'expression d'ARN messager d'hTERT dans les cellules télomérase-positives et la très forte activité transcriptionnelle du promoteur d'hTERT en transfection restent incomprises. Dans cette étude, nous avons montré que la région proximale du gène hTERT (exon 1 et 2) était impliquée dans la répression de l'activité de son promoteur. Nous avons identifié le facteur CTCF comme étant un inhibiteur du promoteur d'hTERT, en se liant au niveau de son premier exon. La méthylation de l'exon 1 du gène hTERT, couramment observée dans les tumeurs mais pas dans les cellules normales, empêcherait la liaison de CTCF. L'étude du profil de méthylation du promoteur d'hTERT indique qu'une partie du promoteur reste déméthylée et qu'elle semble suffisante pour permettre une faible activité transcriptionnelle du gène hTERT. Ainsi, la méthylation particulière des régions régulatrices d'hTERT inhibe la liaison de CTCF tout en permettant une faible transcription du gène. Cependant, dans certaines cellules tumorales, le promoteur et la région proximale du gène hTERT ne sont pas méthylés. Dans les lignées cellulaires tumorales de tesitcules et d'ovaires, l'inhibition de CTCF est contrée par son paralogue BORIS, qui se lie aussi au niveau de l'exon 1 d'hTERT, mais permet ainsi l'activation du promoteur. L'étude de l'expression du gène BORIS montre qu'il est exclusivement exprimé dans les tissus normaux de testicules et d'ovaires jeunes, ainsi qu'à différents niveaux dans la plupart des tumeurs. Sa transcription est sous le contrôle de deux promoteurs. Le promoteur proximal est régulé par méthylation et un transcrit alternatif majoritaire, délété de l'exon 6, est trouvé lorsque ce promoteur est actif. Tous ces résultats conduisent à un modèle de régulation du gène hTERT qui tient compte du profil épigénétique du gène et qui permet d'expliquer le faible taux de transcription observé in vivo. De plus, l'expression de BORIS dans les cancers et son implication dans l'activation du gène hTERT pourrait permettre de comprendre les phénomènes de dérégulation épigénétique et d'immortalisation qui ont lieu durant la tumorigenèse. SUMMARY Telomerase confers an unlimited lifespan, and is reactivated in most tumor cells. The catalytic subunit of telomerase, hTERT, is defined as the limiting factor for telomerase activity. Between activators and repressors that bind to the hTERT 5' regulatory region, and the role of CpG methylation and histone acetylation, an abundance of regulatory models have been suggested. None of these models can explain the silence of telomerase in most somatic cells and its reactivation in tumor cells. Moreover, the contradictory observations of the low level of hTERT mRNA in telomerase-positive cells and the high transcriptional activity of the hTERT promoter in transfection experiments remain unresolved. In this study, we demonstrated that the proximal exonic region of the hTERT gene (exon 1 and 2) is involved in the inhibition of its promoter. We identified the protein CTCF as the inhibitor of the hTERT promoter, through its binding to the first exon. The methylation of the first exon region, which is often observed in cancer cells but not in noimal cells, represses CTCF binding. Study of hTERT promoter methylation shows a partial demethylation sufficient to activate the transcription of the hTERT gene. Therefore, we demonstrated that the particular methylation profile of the hTERT regulatory sequences inhibits the binding of CTCF, while it allows a low transcription of the gene. Nevertheless, in some tumor cells, the promoter and the proximal exonic region of hTERT are unmethylated. In testicular and ovarian cancer cell lines, CTCF inhibition is counteracted by its BORIS paralogue that also binds the hTERT first exon but allows the promoter activation. The study of BORIS gene regulation showed that this factor is exclusively expressed in normal tissue of testis and ovary of young woman, as well as in almost all tumors with different levels. Two promoters were found to induce its transcription. The proximal promoter was regulated by methylation. Moreover, a major alternative transcript, deleted of the exon 6, is detected when this promoter is active. All these results lead to a model for hTERT regulation that takes into account the epigenetic profile of the gene and provides an explanation for the low transcriptional level observed in vivo. BORIS expression in cancers and its implication in hTERT activation might also permit the understanding of epigenetic deregulation and immortalization phenomena that occur during tumorigenesis.
Resumo:
Water delivered by dental units during routine dental practice is densely contaminated by bacteria. The aim of this study was to determine actual isolation of the microorganisms sprayed from Dental Unit Water Lines (DUWLs) when enrichment cultures are performed and to compare frequencies with those obtained without enrichment cultures. Moreover, the antimicrobial susceptibilities of the microorganisms isolated were also studied. Water samples were collected from one hundred dental equipments in use at Dental Hospital of our University in order to evaluate the presence/absence of microorganisms and to perform their presumptive identification. Aliquots from all of the samples were inoculated in eight different media including both enrichment and selective media. Minimal inhibitory concentrations (MIC) were determined by the broth dilution method. The results herein reported demonstrate that most of the DUWLs were colonized by bacteria from human oral cavity; when enrichment procedures were applied the percentage of DUWLs with detectable human bacteria was one hundred percent. The results showed that in order to evaluate the actual risk of infections spread by DUWLs the inclusion of a step of pre-enrichment should be performed. The need for devices preventing bacterial contamination of DUWLs is a goal to be achieved in the near future that would contribute to maintain safety in dental medical assistance
Resumo:
Postmortem human chorionic gonadotrophin (HCG) blood assay can confirm postmortem diagnosis of pregnancy or document situations in which HCG levels are elevated. In some cases, however, blood sampling is not possible at autopsy. In this study, HCG was quantified by enzyme-linked fluorescent assay (ELFA) in the bile (n = 5), vitreous humor (n = 4), and postmortem blood (n = 4) of five pregnant women. There were no false negatives in the pregnant subjects (n = 5) or false positives in controls (n = 34), enabling this test to be recommended for routine use in forensic contexts in which the detection of elevated HCG levels could be of interest.
Resumo:
Isotope ratio mass spectrometry (IRMS) has been used in numerous fields of forensic science in a source inference perspective. This review compiles the studies published on the application of isotope ratio mass spectrometry (IRMS) to the traditional fields of forensic science so far. It completes the review of Benson et al. [1] and synthesises the extent of knowledge already gathered in the following fields: illicit drugs, flammable liquids, human provenancing, microtraces, explosives and other specific materials (packaging tapes, safety matches, plastics, etc.). For each field, a discussion assesses the state of science and highlights the relevance of the information in a forensic context. Through the different discussions which mark out the review, the potential and limitations of IRMS, as well as the needs and challenges of future studies are emphasized. The paper elicits the various dimensions of the source which can be obtained from the isotope information and demonstrates the transversal nature of IRMS as a tool for source inference.
Resumo:
Metastatic melanomas are frequently refractory to most adjuvant therapies such as chemotherapies and radiotherapies. Recently, immunotherapies have shown good results in the treatment of some metastatic melanomas. Immune cell infiltration in the tumor has been associated with successful immunotherapy. More generally, tumor infiltrating lymphocytes (TILs) in the primary tumor and in metastases of melanoma patients have been demonstrated to correlate positively with favorable clinical outcomes. Altogether, these findings suggest the importance of being able to identify, quantify and characterize immune infiltration at the tumor site for a better diagnostic and treatment choice. In this paper, we used Fourier Transform Infrared (FTIR) imaging to identify and quantify different subpopulations of T cells: the cytotoxic T cells (CD8+), the helper T cells (CD4+) and the regulatory T cells (T reg). As a proof of concept, we investigated pure populations isolated from human peripheral blood from 6 healthy donors. These subpopulations were isolated from blood samples by magnetic labeling and purities were assessed by Fluorescence Activated Cell Sorting (FACS). The results presented here show that Fourier Transform Infrared (FTIR) imaging followed by supervised Partial Least Square Discriminant Analysis (PLS-DA) allows an accurate identification of CD4+ T cells and CD8+ T cells (>86%). We then developed a PLS regression allowing the quantification of T reg in a different mix of immune cells (e.g. Peripheral Blood Mononuclear Cells (PBMCs)). Altogether, these results demonstrate the sensitivity of infrared imaging to detect the low biological variability observed in T cell subpopulations.
Resumo:
Background Efforts to identify novel therapeutic options for human pancreatic ductal adenocarcinoma (PDAC) have failed to result in a clear improvement in patient survival to date. Pancreatic cancer requires efficient therapies that must be designed and assayed in preclinical models with improved predictor ability. Among the available preclinical models, the orthotopic approach fits with this expectation, but its use is still occasional. Methods An in vivo platform of 11 orthotopic tumor xenografts has been generated by direct implantation of fresh surgical material. In addition, a frozen tumorgraft bank has been created, ensuring future model recovery and tumor tissue availability. Results Tissue microarray studies allow showing a high degree of original histology preservation and maintenance of protein expression patterns through passages. The models display stable growth kinetics and characteristic metastatic behavior. Moreover, the molecular diversity may facilitate the identification of tumor subtypes and comparison of drug responses that complement or confirm information obtained with other preclinical models. Conclusions This panel represents a useful preclinical tool for testing new agents and treatment protocols and for further exploration of the biological basis of drug responses.
Resumo:
Background Efforts to identify novel therapeutic options for human pancreatic ductal adenocarcinoma (PDAC) have failed to result in a clear improvement in patient survival to date. Pancreatic cancer requires efficient therapies that must be designed and assayed in preclinical models with improved predictor ability. Among the available preclinical models, the orthotopic approach fits with this expectation, but its use is still occasional. Methods An in vivo platform of 11 orthotopic tumor xenografts has been generated by direct implantation of fresh surgical material. In addition, a frozen tumorgraft bank has been created, ensuring future model recovery and tumor tissue availability. Results Tissue microarray studies allow showing a high degree of original histology preservation and maintenance of protein expression patterns through passages. The models display stable growth kinetics and characteristic metastatic behavior. Moreover, the molecular diversity may facilitate the identification of tumor subtypes and comparison of drug responses that complement or confirm information obtained with other preclinical models. Conclusions This panel represents a useful preclinical tool for testing new agents and treatment protocols and for further exploration of the biological basis of drug responses.
Resumo:
"This paper will discuss the major developments in the area of fingerprint" "identification that followed the publication of the National Research Council (NRC, of the US National Academies of Sciences) report in 2009 entitled: Strengthening Forensic Science in the United States: A Path Forward. The report portrayed an image of a field of expertise used for decades without the necessary scientific research-based underpinning. The advances since the report and the needs in selected areas of fingerprinting will be detailed. It includes the measurement of the accuracy, reliability, repeatability and reproducibility of the conclusions offered by fingerprint experts. The paper will also pay attention to the development of statistical models allow- ing assessment of fingerprint comparisons. As a corollary of these developments, the next challenge is to reconcile a traditional practice domi- nated by deterministic conclusions with the probabilistic logic of any statistical model. There is a call for greater candour and fingerprint experts will need to communicate differently on the strengths and limitations of their findings. Their testimony will have to go beyond the blunt assertion" "of the uniqueness of fingerprints or the opinion delivered ispe dixit."
Resumo:
BACKGROUND: Known antiretroviral restriction factors are encoded by genes that are under positive selection pressure, induced during HIV-1 infection, up-regulated by interferons, and/or interact with viral proteins. To identify potential novel restriction factors, we performed genome-wide scans for human genes sharing molecular and evolutionary signatures of known restriction factors and tested the anti-HIV-1 activity of the most promising candidates. RESULTS: Our analyses identified 30 human genes that share characteristics of known restriction factors. Functional analyses of 27 of these candidates showed that over-expression of a strikingly high proportion of them significantly inhibited HIV-1 without causing cytotoxic effects. Five factors (APOL1, APOL6, CD164, TNFRSF10A, TNFRSF10D) suppressed infectious HIV-1 production in transfected 293T cells by >90% and six additional candidates (FCGR3A, CD3E, OAS1, GBP5, SPN, IFI16) achieved this when the virus was lacking intact accessory vpr, vpu and nef genes. Unexpectedly, over-expression of two factors (IL1A, SP110) significantly increased infectious HIV-1 production. Mechanistic studies suggest that the newly identified potential restriction factors act at different steps of the viral replication cycle, including proviral transcription and production of viral proteins. Finally, we confirmed that mRNA expression of most of these candidate restriction factors in primary CD4+ T cells is significantly increased by type I interferons. CONCLUSIONS: A limited number of human genes share multiple characteristics of genes encoding for known restriction factors. Most of them display anti-retroviral activity in transient transfection assays and are expressed in primary CD4+ T cells.
Identification-commitment inventory (ICI-Model): confirmatory factor analysis and construct validity
Resumo:
The aim of this study is to confirm the factorial structure of the Identification-Commitment Inventory (ICI) developed within the frame of the Human System Audit (HSA) (Quijano et al. in Revist Psicol Soc Apl 10(2):27-61, 2000; Pap Psicól Revist Col Of Psicó 29:92-106, 2008). Commitment and identification are understood by the HSA at an individual level as part of the quality of human processes and resources in an organization; and therefore as antecedents of important organizational outcomes, such as personnel turnover intentions, organizational citizenship behavior, etc. (Meyer et al. in J Org Behav 27:665-683, 2006). The theoretical integrative model which underlies ICI Quijano et al. (2000) was tested in a sample (N = 625) of workers in a Spanish public hospital. Confirmatory factor analysis through structural equation modeling was performed. Elliptical least square solution was chosen as estimator procedure on account of non-normal distribution of the variables. The results confirm the goodness of fit of an integrative model, which underlies the relation between Commitment and Identification, although each one is operatively different.
Resumo:
Healthcare accreditation models generally include indicators related to healthcare employees' perceptions (e.g. satisfaction, career development, and health safety). During the accreditation process, organizations are asked to demonstrate the methods with which assessments are made. However, none of the models provide standardized systems for the assessment of employees. In this study, we analyzed the psychometric properties of an instrument for the assessment of nurses' perceptions as indicators of human capital quality in healthcare organizations. The Human Capital Questionnaire was applied to a sample of 902 nurses in four European countries (Spain, Portugal, Poland, and the UK). Exploratory factor analysis identified six factors: satisfaction with leadership, identification and commitment, satisfaction with participation, staff well-being, career development opportunities, and motivation. The results showed the validity and reliability of the questionnaire, which when applied to healthcare organizations, provide a better understanding of nurses' perceptions, and is a parsimonious instrument for assessment and organizational accreditation. From a practical point of view, improving the quality of human capital, by analyzing nurses and other healthcare employees' perceptions, is related to workforce empowerment.
Resumo:
To efficiently replicate within mammalian cells, viruses have to manoeuvre through complex host mechanisms, hijacking a network of host proteins to achieve successful propagation. To prevent this invasion, cells have evolved over time to efficiently block the incursing pathogen by direct or indirect targeting. Human immunodeficiency virus (HIV) is a retrovirus of major global public health issue. In the last decade, extensive focus on innate immune proteins has been given, and particularly restriction factors, proteins inhibiting HIV replication by affecting various stages of the viral cycle. Because of the importance of developing new HIV therapies that are associated with reduced side effects and resistances, there is an urge to understand the antiviral response against HIV. Using common features of known restriction factors as a signature to identify new anti-HIV factors, candidates were identified. Particularly multiple members of the apolipoproteins L (APOL) family were found. Cotransfection experiments confirmed very potent inhibitory effects on HIV-1 expression. Further characterization of APOL6, the best candidate, was carried out. APOL6 was not able to inhibit HIV specifically but rather inhibited any gene-encoded DNA that was cotransfected and therefore APOL6 does not classify as a bona fide restriction factor. In addition, we were able to map the activity of APOL6 to the MAD domain and mainly to residue 174. We also found that other members of the family identified in the screen, APOL1 and 3, could have similar mechanism of action as APOL6. Finally, although the complete mechanism of action of APOL6 has yet to be elucidated, it might be blocked during transfections, potentially improving transfection of primary cells. -- Pour se répliquer efficacement dans les cellules de mammifères, les virus doivent manoeuvrer à travers des mécanismes cellulaires complexes et détourner un réseau de protéines de l'hôte. Pour empêcher cette invasion, les gènes de l'hôte ont évolué dans le temps pour cibler efficacement, directement ou indirectement, l'agent pathogène. Le virus de l'immunodéficience humaine (VIH) est un rétrovirus de problème majeur de santé publique mondiale, mais le faible risque de transmission du virus pourrait être expliqué par la présence d'un système antiviral de l'hôte qui, en cas d'échec, conduit à une infection productive. Durant la dernière décennie, il y a eu un intérêt spécial porté sur les protéines immunitaires innées appelé facteurs de restriction présentant des effets inhibiteurs puissants sur la réplication du VIH en affectant différentes étapes du cycle viral. En raison de l'importance de la recherche de nouvelles thérapies anti-VIH associées à des effets secondaires et des résistances réduites comparé aux traitements actuels, il existe un besoin de comprendre la réponse antivirale innée contre le VIH. Basé sur des caractéristiques communes des facteurs de restriction connus, nous avons proposé d'identifier de nouveaux facteurs anti-VIH. Nous avons trouvé une famille de protéines, les apolipoprotéines L (APOL) montrant les effets inhibiteurs très puissants contre l'expression du VIH-1 dans des expériences de co-transfection. Nous avons décidé d'approfondir le rôle de ces protéines dans l'immunité innée et de se concentrer sur le meilleur candidat APOL6. Nous avons en outre établi qu'APOL6 n'a pas d'activité anti-virale spécifique et donc pas classé comme un facteur de bonne foi de restriction. Par ailleurs, APOL6 est capable d'inhiber fortement l'expression de tout Plasmide cotransfecté. En outre, nous avons été en mesure de cartographier l'activité d'APOL6 au domaine MAD et principalement au résidu 174. Nous avons également constaté que d'autres membres de la famille identifiés dans l'étude, APOL1 et 3, pourraient avoir le même mécanisme d'action qu'APOL6. Enfin, bien que le mécanisme d'action complet d'APOL6 reste à être élucidé, il pourrait être d'une importance biotechnologique car il pourrait potentiellement faciliter la transfection de cellules primaires après l'inhibition d'APOL6.
Resumo:
Autosomal recessive osteopetrosis (ARO) is a rare genetic bone disease with genotypic and phenotypic heterogeneity, sometimes translating into delayed diagnosis and treatment. In particular, cases of intermediate severity often constitute a diagnostic challenge and represent good candidates for exome sequencing. Here, we describe the tortuous path to identification of the molecular defect in two siblings, in which osteopetrosis diagnosed in early childhood followed a milder course, allowing them to reach the adult age in relatively good conditions with no specific therapy. No clearly pathogenic mutation was identified either with standard amplification and resequencing protocols or with exome sequencing analysis. While evaluating the possible impact of a 3'UTR variant on the TCIRG1 expression, we found a novel single nucleotide change buried in the middle of intron 15 of the TCIRG1 gene, about 150 nucleotides away from the closest canonical splice site. By sequencing a number of independent cDNA clones covering exons 14 to 17, we demonstrated that this mutation reduced splicing efficiency but did not completely abrogate the production of the normal transcript. Prompted by this finding, we sequenced the same genomic region in 33 patients from our unresolved ARO cohort and found three additional novel single nucleotide changes in a similar location and with a predicted disruptive effect on splicing, further confirmed in one of them at the transcript level. Overall, we identified an intronic region in TCIRG1 that seems to be particularly prone to splicing mutations, allowing the production of a small amount of protein sufficient to reduce the severity of the phenotype usually associated with TCIRG1 defects. On this basis, we would recommend including TCIRG1 not only in the molecular work-up of severe infantile osteopetrosis but also in intermediate cases and carefully evaluating the possible effects of intronic changes. © 2015 American Society for Bone and Mineral Research.
Resumo:
The aim of this study is to provide an effective and quick reference guide based on the most useful European formulae recently published for subadult age estimation. All of these formulae derive from studies on postnatal growth of the scapula, innominate, femur, and tibia, based on modern skeletal data (173 ♂, 173 ♀) from five documented collections from Spain, Portugal, and Britain. The formulae were calculated from Inverse Regression. For this reason, these formulae are especially useful for modern samples from Western Europe and in particular on 20th century human remains from the Iberian Peninsula. Eleven formulae were selected as the most useful because they can be applied to individuals from within a wide age range and in individuals of unknown sex. Due to their high reliability and because they derive from documented European skeletal samples, we recommend these formulae be used on individuals of Caucasoid ancestry from Western Europe.