836 resultados para Fine Particles
Resumo:
Thyroid fine-needle aspiration (FNA) cytology is a fast growing field. One of the most developing areas is represented by molecular tests applied to cytological material. Patients that could benefit the most from these tests are those that have been diagnosed as 'indeterminate' on FNA. They could be better stratified in terms of malignancy risk and thus oriented with more confidence to the appropriate management. Taking in to consideration the need to improve and keep high the yield of thyroid FNA, professionals from various fields (i.e. molecular biologists, endocrinologists, nuclear medicine physicians and radiologists) are refining and fine-tuning their diagnostic instruments. In particular, all these developments aim at increasing the negative predictive value of FNA to improve the selection of patients for diagnostic surgery. These advances involve terminology, the application of next-generation sequencing to thyroid FNA, the use of immunocyto- and histo-chemistry, the development of new sampling techniques and the increasing use of nuclear medicine as well as molecular imaging in the management of patients with a thyroid nodule. Herein, we review the recent advances in thyroid FNA cytology that could be of interest to the 'thyroid-care' community, with particular focus on the indeterminate diagnostic category.
Resumo:
The oxidative potential (OP) of particulate matter has been proposed as a toxicologically relevant metric. This concept is already frequently used for hazard characterization of ambient particles but it is still seldom applied in the occupational field. The objective of this study was to assess the OP in two different types of workplaces and to investigate the relationship between the OP and the physicochemical characteristics of the collected particles. At a toll station, at the entrance of a tunnel ('Tunnel' site), and at three different mechanical yards ('Depot' sites), we assessed particle mass (PM4 and PM2.5 and size distribution), number and surface area, organic and elemental carbon, polycyclic aromatic hydrocarbon (PAH), and four quinones as well as iron and copper concentration. The OP was determined directly on filters without extraction by using the dithiothreitol assay (DTT assay-OP(DTT)). The averaged mass concentration of respirable particles (PM4) at the Tunnel site was about twice the one at the Depot sites (173±103 and 90±36 µg m(-3), respectively), whereas the OP(DTT) was practically identical for all the sites (10.6±7.2 pmol DTT min(-1) μg(-1) at the Tunnel site; 10.4±4.6 pmol DTT min(-1) μg(-1) at the Depot sites). The OP(DTT) of PM4 was mostly present on the smallest PM2.5 fraction (OP(DTT) PM2.5: 10.2±8.1 pmol DTT min(-1) μg(-1); OP(DTT) PM4: 10.5±5.8 pmol DTT min(-1) μg(-1) for all sites), suggesting the presence of redox inactive components in the PM2.5-4 fraction. Although the reactivity was similar at the Tunnel and Depot sites irrespective of the metric chosen (OP(DTT) µg(-1) or OP(DTT) m(-3)), the chemicals associated with OP(DTT) were different between the two types of workplaces. The organic carbon, quinones, and/or metal content (Fe, Cu) were strongly associated with the DTT reactivity at the Tunnel site whereas only Fe and PAH were associated (positively and negatively, respectively) with this reactivity at the Depot sites. These results demonstrate the feasibility of measuring of the OP(DTT) in occupational environments and suggest that the particulate OP(DTT) is integrative of different physicochemical properties. This parameter could be a potentially useful exposure proxy for investigating particle exposure-related oxidative stress and its consequences. Further research is needed mostly to demonstrate the association of OP(DTT) with relevant oxidative endpoints in humans exposed to particles.
Resumo:
Designing new teaching programs for both undergraduate and graduate university studies involves integrating concepts and methodologies regarding quality, work safety and hazard prevention, and environmental protection. One of the challenges facing Spanish research within the realm of European Higher Education concerns health and safety issues in the Arts.In the case of Fine Arts, student exploration is one of the fundamental pillars of the study program; therefore it is imperative that art studios be optimized. This optimization affects both designated resources (infrastructures, materials, equipment, etc.) and organization of the teaching force.In this context, the aim of our research is to improve educational practices by designing quality measures that are both friendly to the environment and hazardous free. The aim here is to assure adequate art studio and laboratory management, and provide students with hazard free health and environmentally safe concepts that can be incorporated in their professional lives.The school of Fine Arts at the University of Barcelona is part of a pilot program, where our experience in educational innovation and research is serving as a reference for the implantation of OSHAS 18001 norms.
Resumo:
Designing new teaching programs for both undergraduate and graduate university studies involves integrating concepts and methodologies regarding quality, work safety and hazard prevention, and environmental protection. One of the challenges facing Spanish research within the realm of European Higher Education concerns health and safety issues in the Arts.In the case of Fine Arts, student exploration is one of the fundamental pillars of the study program; therefore it is imperative that art studios be optimized. This optimization affects both designated resources (infrastructures, materials, equipment, etc.) and organization of the teaching force.In this context, the aim of our research is to improve educational practices by designing quality measures that are both friendly to the environment and hazardous free. The aim here is to assure adequate art studio and laboratory management, and provide students with hazard free health and environmentally safe concepts that can be incorporated in their professional lives.The school of Fine Arts at the University of Barcelona is part of a pilot program, where our experience in educational innovation and research is serving as a reference for the implantation of OSHAS 18001 norms.
Resumo:
Determining the relative roles of vicariance and selection in restricting gene flow between populations is of central importance to the evolutionary process of population divergence and speciation. Here we use molecular and morphological data to contrast the effect of isolation (by mountains and geographical distance) with that of ecological factors (altitudinal gradients) in promoting differentiation in the wedge-billed woodcreeper, Glyphorynchus spirurus, a tropical forest bird, in Ecuador. Tarsus length and beak size increased relative to body size with altitude on both sides of the Andes, and were correlated with the amount of moss on tree trunks, suggesting the role of selection in driving adaptive divergence. In contrast, molecular data revealed a considerable degree of admixture along these altitudinal gradients, suggesting that adaptive divergence in morphological traits has occurred in the presence of gene flow. As suggested by mitochondrial DNA sequence data, the Andes act as a barrier to gene flow between ancient subspecific lineages. Genome-wide amplified fragment length polymorphism markers reflected more recent patterns of gene flow and revealed fine-scale patterns of population differentiation that were not detectable with mitochondrial DNA, including the differentiation of isolated coastal populations west of the Andes. Our results support the predominant role of geographical isolation in driving genetic differentiation in G. spirurus, yet suggest the role of selection in driving parallel morphological divergence along ecological gradients.
Resumo:
Designing new teaching programs for both undergraduate and graduate university studies involves integrating concepts and methodologies regarding quality, work safety and hazard prevention, and environmental protection. One of the challenges facing Spanish research within the realm of European Higher Education concerns health and safety issues in the Arts.In the case of Fine Arts, student exploration is one of the fundamental pillars of the study program; therefore it is imperative that art studios be optimized. This optimization affects both designated resources (infrastructures, materials, equipment, etc.) and organization of the teaching force.In this context, the aim of our research is to improve educational practices by designing quality measures that are both friendly to the environment and hazardous free. The aim here is to assure adequate art studio and laboratory management, and provide students with hazard free health and environmentally safe concepts that can be incorporated in their professional lives.The school of Fine Arts at the University of Barcelona is part of a pilot program, where our experience in educational innovation and research is serving as a reference for the implantation of OSHAS 18001 norms.
Resumo:
OBJECTIVE: To determine the number of punctures in fine-needle aspiration biopsies required for a safe cytological analysis of thyroid nodules. MATERIALS AND METHODS: Cross-sectional study with focus on diagnosis. The study population included 94 patients. RESULTS: The mean age of the patients participating in the study was 52 years (standard-deviation = 13.7) and 90.4% of them were women. Considering each puncture as an independent event, the first puncture has showed conclusive results in 78.7% of cases, the second, in 81.6%, and the third, in 71.8% of cases. With a view to the increasing chance of a conclusive diagnosis at each new puncture, two punctures have showed conclusive results in 89.5% of cases, and three punctures, in 90.6% of cases with at least one conclusive result. CONCLUSION: Two punctures in fine-needle aspiration biopsies of thyroid nodules have lead to diagnosis in 89.5% of cases in the study sample, suggesting that there is no need for multiple punctures to safely obtain the diagnosis of thyroid nodules.
Resumo:
The twenty-second Theoretical Roman Archaeology Conference (TRAC) was held at the Goethe-University Frankfurt am Main in spring 2012. During the three-day conference fifty papers were delivered, discussing issues from a wide range of geographical regions of the Roman Empire, and applying various theoretical and methodological approaches. An equally wide selection of subjects was presented: sessions looked at Greek art and philhellenism in the Roman world, the validity of the concept of 'Romanisation', change and continuity in Roman religion, urban neighbourhood relations in Pompeii and Ostia, the transformation of objects in and from the Roman world, frontier markets and Roman archaeology in the Provinces. In addition, two general sessions covered single topics such as the 'transvestite of Catterick', metal recycling or Egyptian funeral practice in the Roman period. This volume contains a selection of papers from all these sessions.
Resumo:
Abstract Objective: To propose an algorithm to determine the necessity for ultrasonography-guided fine-needle aspiration (US-FNA) in preoperative axillary lymph node staging of patients with invasive breast cancer. Materials and Methods: Prospective study developed at National Cancer Institute. The study sample included 100 female patients with breast cancer referred for axillary staging by US-FNA. Results: The overall US-FNA sensitivity was set at 79.4%. The positive predictive value was calculated to be 100%, and the negative predictive value, 69.5%. The US-FNA sensitivity for lymph nodes with normal sonographic features was 0%, while for indeterminate lymph nodes it was 80% and, for suspicious lymph nodes, 90.5%. In the assessment of invasive breast tumors stages T1, T2 and T3, the sensitivity was respectively 69.6%, 83.7% and 100%. US-FNA could avoid sentinel node biopsy in 54% of cases. Conclusion: Axillary ultrasonography should be included in the preoperative staging of all patients with invasive breast cancer. The addition of US-FNA in cases of lymph nodes suspicious for malignancy may prevent more than 50% of sentinel lymphadenectomies, significantly shortening the time interval to definitive therapy.
Resumo:
Porous silicon (PSi) is a promising material to be utilized in drug delivery formulations. The release rate of the drug compound can be controlled by changing the pore properties and surface chemistry of PSi. The loading of a poorly soluble drug into mesoporous silicon particles enhances its dissolution in the body. The drug loading is based on adsorption. The attainable maximum loaded amount depends on the properties of the drug compound and the PSi material, and on the process conditions. The loading solvent also essentially affects the adsorption process. The loading of indomethacin into PSi particles with varying surface modification was studied. Solvent mixtures were applied in the loading, and the loaded samples were analyzed with thermal analysis methods. The best degree of loading was obtained using a mixture of dichloromethane and methanol. The drug loads varied from 7.7 w-% to 26.8 w-%. A disturbing factor in the loading experiments was the tendency of indomethacin to form solvates with the solvents applied. In addition, the physical form and stability of indomethacin loaded in PSi and silica particles were studied using Raman spectroscopy. In the case of silica, the presence of crystalline drug as well as the polymorph form can be detected, but the method proved to be not applicable for PSi particles.