778 resultados para Fatty acid degradation
Resumo:
Cannabinoid-based medicines have therapeutic potential for the treatment of pain. Augmentation of levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is analgesic in models of acute and inflammatory pain states. The aim of this study was to determine whether local inhibition of FAAH alters nociceptive responses of spinal neurons in the spinal nerve ligation model of neuropathic pain. Electrophysiological studies were performed 14-18 days after spinal nerve ligation or sham surgery, and the effects of the FAAHinhibitor cyclohexylcarbamic acid 3-carbamoyl biphenyl-3-yl ester (URB597) on mechanically evoked responses of spinal neurons and levels of endocannabinoids were determined. Intraplantar URB597 (25 _g in 50 _l) significantly ( p _ 0.01) attenuated mechanically evoked responses of spinal neurons in sham-operated rats. Effects of URB597 were blocked by the cannabinoid 1 receptor (CB1 ) antagonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide] (30_g in50_l) and the opioid receptor antagonist naloxone. URB597 treatment increased levels of anandamide, 2-arachidonyl glycerol, and oleoyl ethanolamide in the ipsilateral hindpaw of shamoperated rats. Intraplantar URB597 (25 _g in 50 _l) did not, however, alter mechanically evoked responses of spinal neurons in spinal nerve ligated (SNL) rats or hindpaw levels of endocannabinoids. Intraplantar injection of a higher dose of URB597 (100 _g in 50 _l) significantly ( p_0.05) attenuated evoked responses of spinal neurons in SNL rats but did not alter hindpaw levels of endocannabinoids. Spinal administration of URB597 attenuated evoked responses of spinal neurons and elevated levels of endocannabinoids in shamoperated and SNL rats. These data suggest that peripheral FAAH activity may be altered or that alternative pathways of metabolism have greater importance in SNL rats.
Resumo:
OBJECTIVES: To study the effect of short-chain fatty-acids on atrophy and inflammation of excluded colonic segments before and after the development of diversion colitis. INTRODUCTION: Diversion colitis is a chronic inflammatory process affecting the dysfunctional colon, possibly evolving with mucous and blood discharge. The most favored hypotheses to explain its development is short-chain fatty-acid deficiency in the colon lumen. METHODS: Wistar rats were submitted to colostomy with distal colon exclusion. Two control groups (A1 and B1) received rectally administered physiological saline, whereas two experimental groups (A2 and B2) received rectally administered short-chain fatty-acids. The A groups were prophylactically treated (5th to 40th days postoperatively), whereas the B groups were therapeutically treated (after post-operative day 40). The mucosal thickness of the excluded colon was measured histologically. The inflammatory reaction of the mucosal lamina propria and the lymphoid tissue response were quantified through established scores. RESULTS: There was a significant thickness recovery of the colonic mucosa in group B2 animals (p = 0.0001), which also exhibited a significant reduction in the number of eosinophilic polymorphonuclear cells in the lamina propria (p = 0.0126) and in the intestinal lumen (p = 0.0256). Group A2 showed no mucosal thickness recovery and significant increases in the numbers of lymphocytes (p = 0.0006) and eosinophilic polymorphonuclear cells in the lamina propria of the mucosa (p = 0.0022). CONCLUSION: Therapeutic use of short-chain fatty-acids significantly reduced eosinophilic polymorphonuclear cell numbers in the intestinal wall and in the colonic lumen; it also reversed the atrophy of the colonic mucosa. Prophylactic use did not impede the development of mucosal atrophy
Resumo:
Fatty acid degradation in most organisms occurs primarily via the beta-oxidation cycle. In mammals, beta-oxidation occurs in both mitochondria and peroxisomes, whereas plants and most fungi harbor the beta-oxidation cycle only in the peroxisomes. Although several of the enzymes participating in this pathway in both organelles are similar, some distinct physiological roles have been uncovered. Recent advances in the structural elucidation of numerous mammalian and yeast enzymes involved in beta-oxidation have shed light on the basis of the substrate specificity for several of them. Of particular interest is the structural organization and function of the type 1 and 2 multifunctional enzyme (MFE-1 and MFE-2), two enzymes evolutionarily distant yet catalyzing the same overall enzymatic reactions but via opposite stereochemistry. New data on the physiological roles of the various enzymes participating in beta-oxidation have been gathered through the analysis of knockout mutants in plants, yeast and animals, as well as by the use of polyhydroxyalkanoate synthesis from beta-oxidation intermediates as a tool to study carbon flux through the pathway. In plants, both forward and reverse genetics performed on the model plant Arabidopsis thaliana have revealed novel roles for beta-oxidation in the germination process that is independent of the generation of carbohydrates for growth, as well as in embryo and flower development, and the generation of the phytohormone indole-3-acetic acid and the signal molecule jasmonic acid.
Resumo:
Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.
Resumo:
The Gac/Rsm signal transduction pathway positively regulates secondary metabolism, production of extracellular enzymes, and biocontrol properties of Pseudomonas fluorescens CHA0 via the expression of three noncoding small RNAs, termed RsmX, RsmY, and RsmZ. The architecture and function of the rsmY and rsmZ promoters were studied in vivo. A conserved palindromic upstream activating sequence (UAS) was found to be necessary but not sufficient for rsmY and rsmZ expression and for activation by the response regulator GacA. A poorly conserved linker region located between the UAS and the -10 promoter sequence was also essential for GacA-dependent rsmY and rsmZ expression, suggesting a need for auxiliary transcription factors. One such factor involved in the activation of the rsmZ promoter was identified as the PsrA protein, previously recognized as an activator of the rpoS gene and a repressor of fatty acid degradation. Furthermore, the integration host factor (IHF) protein was found to bind with high affinity to the rsmZ promoter region in vitro, suggesting that DNA bending contributes to the regulated expression of rsmZ. In an rsmXYZ triple mutant, the expression of rsmY and rsmZ was elevated above that found in the wild type. This negative feedback loop appears to involve the translational regulators RsmA and RsmE, whose activity is antagonized by RsmXYZ, and several hypothetical DNA-binding proteins. This highly complex network controls the expression of the three small RNAs in response to cell physiology and cell population densities.
Resumo:
Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyacids naturally synthesized in bacteria as a carbon reserve. PHAs have properties of biodegradable thermoplastics and elastomers and their synthesis in crop plants is seen as an attractive system for the sustained production of large amounts of polymers at low cost. A variety of PHAs having different physical properties have now been synthesized in a number of transgenic plants, including Arabidopsis thaliana, rape and corn. This has been accomplished through the creation of novel metabolic pathways either in the cytoplasm, plastid or peroxisome of plant cells. Beyond its impact in biotechnology, PHA production in plants can also be used to study some fundamental aspects of plant metabolism. Synthesis of PHA can be used both as an indicator and a modulator of the carbon flux to pathways competing for common substrates, such as acetyl-coenzyme A in fatty acid biosynthesis or 3-hydroxyacyl-coenzyme A in fatty acid degradation. Synthesis of PHAs in plant peroxisome has been used to demonstrate changes in the flux of fatty acids to the beta-oxidation cycle in transgenic plants and mutants affected in lipid biosynthesis, as well as to study the pathway of degradation of unusual fatty acids.
Resumo:
Free and total carnitine quantification is important as a complementary test for the diagnosis of unusual metabolic diseases, including fatty acid degradation disorders. The present study reports a new method for the quantification of free and total carnitine in dried plasma specimens by isotope dilution electrospray tandem mass spectrometry with sample derivatization. Carnitine is determined by looking for the precursor of ions of m/z = 103 of N-butylester derivative, and the method is validated by comparison with radioenzymatic assay. We obtained an inter- and intra-day assay coefficient of variation of 4.3 and 2.3, respectively. Free and total carnitine was analyzed in 309 dried plasma spot samples from children ranging in age from newborn to 14 years using the new method, which was found to be suitable for calculating reference age-related values for free and total carnitine (less than one month: 19.3 ± 2.4 and 23.5 ± 2.9; one to twelve months: 28.8 ± 10.2 and 35.9 ± 11.4; one to seven years: 30.7 ± 10.3 and 38.1 ± 11.9; seven to 14 years: 33.7 ± 11.6, and 43.1 ± 13.8 µM, respectively). No difference was found between males and females. A significant difference was observed between neonates and the other age groups. We compare our data with reference values in the literature, most of them obtained by radioenzymatic assay. However, this method is laborious and time consuming. The electrospray tandem mass spectrometry method presented here is a reliable, rapid and automated procedure for carnitine quantitation.
Resumo:
Le rôle important joué par la mitochondrie dans la cellule eucaryote est admis depuis longtemps. Cependant, la composition exacte des mitochondries, ainsi que les processus biologiques qui sy déroulent restent encore largement inconnus. Deux facteurs principaux permettent dexpliquer pourquoi létude des mitochondries progresse si lentement : le manque defficacité des méthodes didentification des protéines mitochondriales et le manque de précision dans lannotation de ces protéines. En conséquence, nous avons développé un nouvel outil informatique, YimLoc, qui permet de prédire avec succès les protéines mitochondriales à partir des séquences génomiques. Cet outil intègre plusieurs indicateurs existants, et sa performance est supérieure à celle des indicateurs considérés individuellement. Nous avons analysé environ 60 génomes fongiques avec YimLoc afin de lever la controverse concernant la localisation de la bêta-oxydation dans ces organismes. Contrairement à ce qui était généralement admis, nos résultats montrent que la plupart des groupes de Fungi possèdent une bêta-oxydation mitochondriale. Ce travail met également en évidence la diversité des processus de bêta-oxydation chez les champignons, en corrélation avec leur utilisation des acides gras comme source dénergie et de carbone. De plus, nous avons étudié le composant clef de la voie de bêta-oxydation mitochondriale, lacyl-CoA déshydrogénase (ACAD), dans 250 espèces, couvrant les 3 domaines de la vie, en combinant la prédiction de la localisation subcellulaire avec la classification en sous-familles et linférence phylogénétique. Notre étude suggère que les gènes ACAD font partie dune ancienne famille qui a adopté des stratégies évolutionnaires innovatrices afin de générer un large ensemble denzymes susceptibles dutiliser la plupart des acides gras et des acides aminés. Finalement, afin de permettre la prédiction de protéines mitochondriales à partir de données autres que les séquences génomiques, nous avons développé le logiciel TESTLoc qui utilise comme données des Expressed Sequence Tags (ESTs). La performance de TESTLoc est significativement supérieure à celle de tout autre outil de prédiction connu. En plus de fournir deux nouveaux outils de prédiction de la localisation subcellulaire utilisant différents types de données, nos travaux démontrent comment lassociation de la prédiction de la localisation subcellulaire à dautres méthodes danalyse in silico permet daméliorer la connaissance des protéines mitochondriales. De plus, ces travaux proposent des hypothèses claires et faciles à vérifier par des expériences, ce qui présente un grand potentiel pour faire progresser nos connaissances des métabolismes mitochondriaux.
Resumo:
Background: Diet compounds may influence obesity-related cardiac oxidative stress and metabolic sifting. Carbohydrate-rich diet may be disadvantageous from fat-rich diet to cardiac tissue and glycemic index rather than lipid profile may predict the obesity-related cardiac effects.Materials and methods: Male Wistar rats were divided into three groups (n=8/group): (C) receiving standard chow (3.0 kcal/g); (CRD) receiving carbohydrate-rich diet (4.0 kcal/g), and (FRD) receiving fat-rich diet (4.0 kcal/g). Rats were sacrificed after the oral glucose tolerance test (OGTT) at 60 days of dietary treatments. Lipid profile and oxidative stress parameters were determined in serum. Myocardial samples were used to determine oxidative stress, metabolic enzymes, glycogen and triacylglycerol.Results: FRD rats showed higher final body weight and body mass index than CRD and C. Serum cholesterol and low-density lipoprotein were higher in FRD than in CRD, while triacylglycerol and oxidized low-density lipoprotein cholesterol were higher in CRD than in FRD. CRD rats had the highest myocardial lipid hydroperoxide and diminished superoxide dismutase and catalase activities. Myocardial glycogen was lower and triacylglycerol was higher in CRD than in C and FRD rats. Although FRD rats had depressed myocardial-reducing power, no significant changes were observed in myocardial energy metabolism. Myocardial beta-hydroxyacyl coenzyme-A dehydrogenase and citrate synthase, as well as the enhanced lactate debydrogenase/citrate synthase ratio indicated that fatty acid degradation was decreased in CRD rats. Glycemic index was positively correlated with obesity-related cardiac effects.Conclusions: Isoenergetic carbohydrate-rich and fat-rich diets induced different degree of obesity and differently affected lipid profile. Carbohydrate-rich diet was deleterious relative to fat-rich diet in the heart enhancing lipoperoxidation and shifting the metabolic pathway for energy production. Glycemic index rather than dyslipidemic profile may predict the obesity effects on cardiac tissue. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Il presente elaborato è stato finalizzato allo sviluppo di un processo di digestione anaerobica della frazione organica dei rifiuti solidi urbani (FORSU oppure, in lingua inglese OFMSW, Organic Fraction of Municipal Solid Waste) provenienti da raccolta indifferenziata e conseguente produzione di biogas da impiegarsi per il recupero energetico. Questo lavoro rientra nell’ambito di un progetto, cofinanziato dalla Regione Emilia Romagna attraverso il Programma Regionale per la Ricerca Industriale, l’Innovazione e il Trasferimento Tecnologico (PRRIITT), sviluppato dal Dipartimento di Chimica Applicata e Scienza dei Materiali (DICASM) dell’Università di Bologna in collaborazione con la Facoltà di Ingegneria dell’Università di Ferrara e con la società Recupera s.r.l. che applicherà il processo nell’impianto pilota realizzato presso il proprio sito di biostabilizzazione e compostaggio ad Ostellato (FE). L’obiettivo è stato la verifica della possibilità di impiegare la frazione organica dei rifiuti indifferenziati per la produzione di biogas, e in particolare di metano, attraverso un processo di digestione anaerobica previo trattamento chimico oppure in codigestione con altri substrati organici facilmente fermentabili. E’ stata inoltre studiata la possibilità di impiego di reattori con biomassa adesa per migliorare la produzione specifica di metano e diminuire la lag phase. Dalla sperimentazione si può concludere che è possibile giungere allo sviluppo di metano dalla purea codigerendola assieme a refluo zootecnico. Per ottenere però produzioni significative la quantità di solidi volatili apportati dal rifiuto non deve superare il 50% dei solidi volatili complessivi. Viceversa, l’addizione di solfuri alla sola purea si è dimostrata ininfluente nel tentativo di sottrarre gli agenti inibitori della metanogenesi. Inoltre, l’impiego di supporti di riempimento lavorando attraverso processi batch sequenziali permette di eliminare, nei cicli successivi al primo, la lag phase dei batteri metanogeni ed incrementare la produzione specifica di metano.
Resumo:
The UV light-induced synthesis of UV-protective flavonoids diverts substantial amounts of substrates from primary metabolism into secondary product formation and thus causes major perturbations of the cellular homeostasis. Results from this study show that the mRNAs encoding representative enzymes from various supply pathways are coinduced in UV-irradiated parsley cells (Petroselinum crispum) with two mRNAs of flavonoid glycoside biosynthesis, encoding phenylalanine ammonia-lyase and chalcone synthase. Strong induction was observed for mRNAs encoding glucose 6-phosphate dehydrogenase (carbohydrate metabolism, providing substrates for the shikimate pathway), 3-deoxyarabinoheptulosonate 7-phosphate synthase (shikimate pathway, yielding phenylalanine), and acyl-CoA oxidase (fatty acid degradation, yielding acetyl-CoA), and moderate induction for an mRNA encoding S-adenosyl-homocysteine hydrolase (activated methyl cycle, yielding S-adenosyl-methionine for B-ring methylation). Ten arbitrarily selected mRNAs representing various unrelated metabolic activities remained unaffected. Comparative analysis of acyl-CoA oxidase and chalcone synthase with respect to mRNA expression modes and gene promoter structure and function revealed close similarities. These results indicate a fine-tuned regulatory network integrating those functionally related pathways of primary and secondary metabolism that are specifically required for protective adaptation to UV irradiation. Although the response of parsley cells to UV light is considerably broader than previously assumed, it contrasts greatly with the extensive metabolic reprogramming observed previously in elicitor-treated or fungus-infected cells.
Resumo:
Many bacteria use acyl homoserine lactone signals to monitor cell density in a type of gene regulation termed quorum sensing and response. Synthesis of these signals is directed by homologs of the luxi gene of Vibrio fischeri. This communication resolves two critical issues concerning the synthesis of the V. fischeri signal. (i) The luxI product is directly involved in signal synthesis-the protein is an acyl homoserine lactone synthase; and (ii) the substrates for acyl homoserine lactone synthesis are not amino acids from biosynthetic pathways or fatty acid degradation products, but rather they are S-adenosylmethionine (SAM) and an acylated acyl carrier protein (ACP) from the fatty acid biosynthesis pathway. We purified a maltose binding protein-LuxI fusion polypeptide and showed that, when provided with the appropriate substrates, it catalyzes the synthesis of an acyl homoserine lactone. In V. fischeri, luxi directs the synthesis of N-(3-oxohexanoyl) homoserine lactone and hexanoyl homoserine lactone. The purified maltose binding protein-LuxI fusion protein catalyzes the synthesis of hexanoyl homoserine lactone from hexanoyl-ACP and SAM. There is a high level of specificity for hexanoyl-ACP over ACPs with differing acyl group lengths, and hexanoyl homoserine lactone was not synthesized when SAM was replaced with other amino acids, such as methionine, S-adenosylhomocysteine, homoserine, or homoserine lactone, or when hexanoyl-SAM was provided as the substrate. This provides direct evidence that the LuxI protein is an auto-inducer synthase that catalyzes the formation of an amide bond between SAM and a fatty acyl-ACP and then catalyzes the formation of the acyl homoserine lactone from the acyl-SAM intermediate.
Resumo:
The plant acyl-acyl carrier protein (ACP) thioesterases (TEs) are of biochemical interest because of their roles in fatty acid synthesis and their utilities in the bioengineering of plant seed oils. When the FatB1 cDNA encoding a 12:0-ACP TE (Uc FatB1) from California bay, Umbellularia californica (Uc) was expressed in Escherichia coli and in developing oilseeds of the plants Arabidopsis thaliana and Brassica napus, large amounts of laurate (12:0) and small amounts of myristate (14:0) were accumulated. We have isolated a TE cDNA from camphor (Cinnamomum camphorum) (Cc) seeds that shares 92% amino acid identity with Uc FatB1. This TE, Cc FatB1, mainly hydrolyzes 14:0-ACP as shown by E. coli expression. We have investigated the roles of the N- and C-terminal regions in determining substrate specificity by constructing two chimeric enzymes, in which the N-terminal portion of one protein is fused to the C-terminal portion of the other. Our results show that the C-terminal two-thirds of the protein is critical for the specificity. By site-directed mutagenesis, we have replaced several amino acids in Uc FatB1 by using the Cc FatB1 sequence as a guide. A double mutant, which changes Met-197 to an Arg and Arg-199 to a His (M197R/R199H), turns Uc FatB1 into a 12:0/14:0 TE with equal preference for both substrates. Another mutation, T231K, by itself does not effect the specificity. However, when it is combined with the double mutant to generate a triple mutant (M197R/R199H/T231K), Uc FatB1 is converted to a 14:0-ACP TE. Expression of the double-mutant cDNA in E. coli K27, a strain deficient in fatty acid degradation, results in accumulation of similar amounts of 12:0 and 14:0. Meanwhile the E. coli expressing the triple-mutant cDNA produces predominantly 14:0 with very small amounts of 12:0. Kinetic studies indicate that both wild-type Uc FatB1 and the triple mutant have similar values of Km,app with respect to 14:0-ACP. Inhibitory studies also show that 12:0-ACP is a good competitive inhibitor with respect to 14:0-ACP in both the wild type and the triple mutant. These results imply that both 12:0- and 14:0-ACP can bind to the two proteins equally well, but in the case of the triple mutant, the hydrolysis of 12:0-ACP is severely impaired. The ability to modify TE specificity should allow the production of additional "designer oils" in genetically engineered plants.