900 resultados para FUNCTIONAL EXPRESSION
Resumo:
Group A Streptococcus is a Gram-positive human pathogen able to colonize both upper respiratory tract and skin. GAS is responsible for several acute diseases and autoimmune sequelae that account for half a million deaths worldwide every year (Cunningham et al., 2000). As other bacteria, GAS infections requires the capacity of the pathogen to adhere to host tissues and to form cell aggregates. The ability to persist in distinct host niches like the throat and the skin and to trigger infections is associated with the expression of different GAS virulence factors. GAS pili has been described as important virulence factors encoded by different FCT-operon regions. Based on this information, we decided to study the possible effect of environmental conditions that could regulate the pili expression. In this study we reported the influence of pH environment variations in biofilm formation for strains pertaining to a panel of different GAS FCT-types. The biofilm formation was promoted, excepted in the FCT-1 strains, by a changing in pH from physiological to acidic condition of growth in in vitro biofilm assay. By analyzing the possible association between biofilm formation and pH dependence, we have found that in FCT-2 and FCT-3 strains, the biofilm is promoted by pH reduction leading to an increase of pili expression. These data confirmed a direct link between pH dependent pilus expression and biofilm formation in GAS. As pili are a multi component structure we decided to investigate the functional role of one of its subunits, the AP-1 protein. AP-1 is highly conserved through the different FCT-types and suggests a possible essential role for the pili function. We focused our attention on the AP-1 protein encoded by the FCT-1 strains (M6). In particular this AP-1 protein contains the von Willebrand Factor A (VWFA) domain, which share an homology with the human VWFA domain that has been reported to be involved in adhesion process. We have demonstrated that the AP-1 protein binds to human epithelial cells by its VWFA domain, whereas the biofilm formation is mediated by the N-terminal region of AP-1 protein. Moreover, analyzing the importance of AP-1 in in vivo experiments we found a major capacity of tissue dissemination for the wild-type strain compared to the isogenic AP-1 deletion mutant. Pili have been also reported as potential vaccine candidates against Gram positive bacteria. For these reason we decided to investigate the relationship between cross reaction of sera raised against different GAS and GBS pilin subunits and the presence of a conserved Cna_B domain, in different pilin components. Our idea was to investigate if, using pilus conserved domains, a broad coverage vaccine against streptococcal infection could be possible.
Resumo:
Grape berry is considered a non climacteric fruit, but there are some evidences that ethylene plays a role in the control of berry ripening. This PhD thesis aimed to give insights in the role of ethylene and ethylene-related genes in the regulation of grape berry ripening. During this study a small increase in ethylene concentration one week before véraison has been measured in Vitis vinifera L. ‘Pinot Noir’ grapes confirming previous findings in ‘Cabernet Sauvignon’. In addition, ethylene-related genes have been identified in the grapevine genome sequence. Similarly to other species, biosynthesis and ethylene receptor genes are present in grapevine as multi-gene families and their expression appeared tissue or developmental specific. All the other elements of the ethylene signal transduction cascade were also identified in the grape genome. Among them, there were ethylene response factors (ERF) which modulate the transcription of many effector genes in response to ethylene. In this study seven grapevine ERFs have been characterized and they showed tissue and berry development specific expression profiles. Two sequences, VvERF045 and VvERF063, seemed likely involved in berry ripening control due to their expression profiles and their sequence annotation. VvERF045 was induced before véraison and was specific of the ripe berry, by sequence similarity it was likely a transcription activator. VvERF063 displayed high sequence similarity to repressors of transcription and its expression, very high in green berries, was lowest at véraison and during ripening. To functionally characterize VvERF045 and VvERF063, a stable transformation strategy was chosen. Both sequences were cloned in vectors for over-expression and silencing and transferred in grape by Agrobacterium-mediated or biolistic-mediated gene transfer. In vitro, transgenic VvERF045 over-expressing plants displayed an epinastic phenotype whose extent was correlated to the transgene expression level. Four pathogen stress response genes were significantly induced in the transgenic plants, suggesting a putative function of VvERF045 in biotic stress defense during berry ripening. Further molecular analysis on the transgenic plants will help in identifying the actual VvERF045 target genes and together with the phenotypic characterization of the adult transgenic plants, will allow to extensively define the role of VvERF045 in berry ripening.
Resumo:
Neisseria meningitidis (Nm) is the major cause of septicemia and meningococcal meningitis. During the course of infection, it must adapt to different host environments as a crucial factor for survival. Despite the severity of meningococcal sepsis, little is known about how Nm adapts to permit survival and growth in human blood. A previous time-course transcriptome analysis, using an ex vivo model of human whole blood infection, showed that Nm alters the expression of nearly 30% of ORFs of the genome: major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. Starting from these data, mutagenesis studies of a subset of up-regulated genes were performed and the mutants were tested for the ability to survive in human whole blood; Nm mutant strains lacking the genes encoding NMB1483, NalP, Mip, NspA, Fur, TbpB, and LctP were sensitive to killing by human blood. Then, the analysis was extended to the whole Nm transcriptome in human blood, using a customized 60-mer oligonucleotide tiling microarray. The application of specifically developed software combined with this new tiling array allowed the identification of different types of regulated transcripts: small intergenic RNAs, antisense RNAs, 5’ and 3’ untranslated regions and operons. The expression of these RNA molecules was confirmed by 5’-3’RACE protocol and specific RT-PCR. Here we describe the complete transcriptome of Nm during incubation in human blood; we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. In addition the tiling array analysis demonstrated that Nm expresses a set of new transcripts, not previously identified, and suggests the presence of a circuit of regulatory RNA elements used by Nm to adapt to proliferate in human blood.
Resumo:
Nozizeptive Spinalganglienneurone detektieren mit einer Vielzahl liganden- und spannungsgesteuerter Ionenkanäle noxische Reize, d.h. Reize, die eine Gewebeschädigung bewirken können, wandeln sie in Aktionspotenzialentladungen um und leiten sie über das Rückenmark zum Gehirn weiter, wo eine Schmerzempfindung ausgelöst wird. Die pronozizeptiven transienten Rezeptor-Potenzial-Kanäle der Vanilloidrezeptorfamilie, TRPV1 und TRPV2, sind die klassischen Transduktionsmoleküle für noxische Hitzereize in den Spinalganglien und werden von Reiztemperaturen über 43°C bzw. 52°C aktiviert. Daneben finden sich auch antinozizeptive Membranproteine, wie z.B. der metabotrope Cannabinoidrezeptor CB1. Er koppelt an spannungsgesteuerte Kaliumkanäle, die neben Natrium- und Kalziumkanälen ebenfalls an der neuronalen Erregbarkeit beteiligt sind. Von den spannungsgesteuerten Kaliumkanälen könnte der Kv1.4, der einen schnell inaktivierenden A-Strom vermittelt, an antinozizeptiven Signalwegen beteiligt sein. Um die molekulare Physiologie der Regulation von Nozizeption und Antinozizeption zu charakterisieren, wurde die Expression bzw. Ko-Expression dieser Membranproteine auf der einen als auch die funktionelle Charakterisierung von TRPV1 auf der anderen Seite im Soma der Spinalganglienneurone und im heterologen Expressionssystem untersucht. TRPV1 wurde in je einem Drittel und TRPV2 in je einem Zehntel aller Spinalganglienneurone nachgewiesen. Das Expressionsmuster veränderte sich nicht zwischen verschiedenen Präparationsmethoden, die zur Aufarbeitung der Zellen für unterschiedliche experimentelle Ansätze notwendig sind. Somit können die aus Expressionsanalysen und funktionellen Untersuchungen gewonnenen Ergebnisse miteinander verglichen werden. Obwohl TRPV1 und TRPV2 in unterschiedlich großen Zellen exprimiert werden, überlappen dennoch ihre Größenverteilungen. Durch Ko-Expressionsanalysen konnten hier erstmalig TRPV1-TRPV2-ko-exprimierende Neurone detektiert werden. Mit dem neu entwickelten N-terminalen Antikörper gegen TRPV1 (3C11) konnte gezeigt werden, dass für TRPV1 verschiedene Splice-Varianten existieren. Neben den bereits bekannten Splice-Varianten wurde hier die neue Variante Vr.3’sv isoliert. Diese besitzt zwischen Exon 15 und 16 eine Insertion aus 104 Basen und exprimiert daher einen veränderten C-Terminus. Trotz dieser Veränderung bildeten sich im heterologen Expressionssystem funktionelle Kanäle aus, die im Gegensatz zu den anderen Varianten immer noch durch Capsaicin aktivierbar waren. Vr.3’sv könnte als Homo- oder Heterotetramer die Eigenschaften TRPV1-positiver Neurone beeinflussen. Bei der Bestimmung der Häufigkeit von TRPV1 in einem Gewebe ist somit die Wahl des Antikörpers von entscheidender Bedeutung. Für TRPV2 dagegen gibt es hier keine Hinweise auf Splice-Varianten. TRPV1 wird durch das Vanilloid Capsaicin aktiviert, wobei diese Substanz neurotoxisch ist und eine Degeneration von Neuronen und epidermalen Nervenfasern bewirkt. Hier wurde nun gezeigt, dass unabhängig von den Splice-Varianten nicht alle TRPV1-positiven Neurone bei langer Inkubationszeit absterben. Funktionelle Untersuchungen belegten, dass auch Capsaicin-sensitive Zellen unter dem Einfluss des Agonisten überleben können. Dieser Schutzmechanismus wird möglicherweise von den verschiedenen Splice-Varianten vermittelt. Ko-Expressionsanalysen zeigten, dass der spannungsgesteuerte Kaliumkanal Kv1.4 in nahezu allen TRPV1- aber nicht TRPV2-positiven Neuronen exprimiert wird. Desweiteren ko-exprimierten nahezu alle TRPV1-positiven Neurone auch den Cannabinoidrezeptor CB1. Diese fast vollständige Ko-Lokalisation von CB1 und Kv1.4 in nozizeptiven Spinalganglienneuronen spricht für eine funktionell synergistische Aktivität. Der Kaliumkanal kann unter der regulativen Kontrolle von CB1 als Vermittler von A-Typ-Kaliumströmen an der Kontrolle der repetitiven Entladungen in der Peripherie und der Transmitterausschüttung zentral beteiligt sein. Es ergeben sich daraus Ansatzpunkte für die Entwicklung neuer Medikamente. Mit Kv1.4-Aktivatoren und/oder peripher wirkenden Cannabinoiden könnten die Nebenwirkungen der Cannabinoide im zentralen Nervensystem umgangen werden.
Resumo:
Cancer is a multi-step process in which both the activation of oncogenes and the inactivation of tumor suppressor genes alter the normal cellular programs to a state of proliferation and growth. The regulation of a number of tumor suppressor genes and the mechanism underlying the tumor suppression have been intensively studied. Hugl-1 and Hugl-2, the human homologues of Drosophila lgl are shown to be down-regulated in a variety of cancers including breast, colon, lung and melanoma, but the mechanism responsible for loss of expression is not yet known. The regulation of gene expression is influenced by factors inducing or repressing transcription. The present study was focused on the identification and characterization of the active promoters of Hugl-1 and Hugl-2. Further, the regulation of the promoter and functional consequences of this regulation by specific transcription factors was analyzed. Experiments to delineate the function of the mouse homologue of Hugl-2, mgl2 using transgenic mice model were performed. This study shows that the active promoter for both Hugl-1 and Hugl-2 is located 1000bp upstream of transcription start sites. The study also provides first insight into the regulation of Hugl-2 by an important EMT transcriptional regulator, Snail. Direct binding of Snail to four E-boxes present in Hugl-2 promoter region results in repression of Hugl-2 expression. Hugl-1 and Hugl-2 plays pivotal role in establishment and maintenance of cell polarity in a diversity of cell types and organisms. Loss of epithelial cell polarity is a prerequisite for cancer progression and metastasis and is an important step in inducing EMT in cells. Regulation of Hugl-2 by Snail suggests one of the initial events towards loss of epithelial cell polarity during Snail-mediated EMT. Another important finding of this study is the induction of Hugl-2 expression can reverse the Snail-driven EMT. Inducing Hugl-2 in Snail expressing cells results in the re-expression of epithelial markers E-cadherin and Cytokeratin-18. Further, Hugl-2 also reduces the rate of tumor growth, cell migration and induces the epithelial phenotype in 3D culture model in cells expressing Snail. Studies to gain insight into the signaling pathways involved in reversing Snail-mediated EMT revealed that induction of Hugl-2 expression interferes with the activation of extracellular receptor kinase, Erk. Functional aspects of mammalian lgl in vivo was investigated by establishing mgl2 conditional knockout mice. Though disruption of mgl2 gene in hepatic tissues did not alter the growth and development, ubiquitous disruption of mgl2 gene causes embryonic lethality which is evident by the fact that no mgl2-/- mice were born.
Resumo:
From the late 1980s, the automation of sequencing techniques and the computer spread gave rise to a flourishing number of new molecular structures and sequences and to proliferation of new databases in which to store them. Here are presented three computational approaches able to analyse the massive amount of publicly avalilable data in order to answer to important biological questions. The first strategy studies the incorrect assignment of the first AUG codon in a messenger RNA (mRNA), due to the incomplete determination of its 5' end sequence. An extension of the mRNA 5' coding region was identified in 477 in human loci, out of all human known mRNAs analysed, using an automated expressed sequence tag (EST)-based approach. Proof-of-concept confirmation was obtained by in vitro cloning and sequencing for GNB2L1, QARS and TDP2 and the consequences for the functional studies are discussed. The second approach analyses the codon bias, the phenomenon in which distinct synonymous codons are used with different frequencies, and, following integration with a gene expression profile, estimates the total number of codons present across all the expressed mRNAs (named here "codonome value") in a given biological condition. Systematic analyses across different pathological and normal human tissues and multiple species shows a surprisingly tight correlation between the codon bias and the codonome bias. The third approach is useful to studies the expression of human autism spectrum disorder (ASD) implicated genes. ASD implicated genes sharing microRNA response elements (MREs) for the same microRNA are co-expressed in brain samples from healthy and ASD affected individuals. The different expression of a recently identified long non coding RNA which have four MREs for the same microRNA could disrupt the equilibrium in this network, but further analyses and experiments are needed.
Resumo:
DNA damage causes replication errors, leading to genetic instability or cell death. Besides that, many types of DNA base modifications have been shown to interfere with transcriptional elongation if they are located in the transcribed DNA strand of active genes, acting as roadblocks for RNA polymerases. It is widely assumed that transcription blockage by endogenous DNA damage is responsible for the early cell senescence in organs and accelerated ageing observed in individuals with compromised nucleotide excision repair.rnThe aims of this work were to design new experimental systems for testing transcription blocking potentials of DNA base modifications in an individual gene and to apply these test systems to the investigation of the effects of a frequent endogenously generated base modification, namely 8-oxo-7,8-hydroxyguanine (8-oxoG), on the gene transcription in cells. Several experimental strategies were employed for this purpose. First, I constructed an episomal vector encoding for a short-lived EGFP-ODC fusion protein and measured expression of the reporter gene in permanently transfected clonal cell lines exposed to DNA damaging agents. Second, the expression of plasmid-borne EGFP gene damaged with photosensitisers to obtain one or several oxidative purine modifications per plasmid molecule was determined in transiently transfected human and mouse host cells in an approach known as “host cell reactivation”. As a prerequisite for these experiments, a robust method of precise quantitative measurement of the EGFP gene expression in transiently transfected cells by flow cytometry was developed and validated. Third, I elaborated a very efficient procedure for insertion of synthetic oligonucleotides carrying 8-oxoG into plasmid DNA, avoiding any unwanted base damage and strand breaks. The consequences of 8-oxoG placed in defined positions in opposing DNA strands of the EGFP gene for transcription were measured by host cell reactivation in cells with functional 8-oxoguanine DNA glycosylase (OGG1) gene and in OGG1 null cells.rnThe results obtained in Ogg1-/- cells demonstrated that unrepaired 8-oxoG, even if situated in the transcribed DNA strand, does not have any negative effect on the reporter gene transcription. On the other hand, as few as one 8-oxoG was sufficient to cause a significant decrease of the gene expression in OGG1-proficient cell lines, i.e. in the presence of base excision repair. For two analysed positions of 8-oxoG in the plasmid DNA, the inhibition of gene transcription by the base modification correlated with the efficiency of its excision by purified OGG1 protein under cell-free conditions. Based on these findings, it has to be concluded that the observed decrease of transcription is mediated by excision of the base modification by OGG1 and probably caused by the repair-induced single-strand breaks. The mechanism of transcription inhibition by 8-oxoG is therefore clearly distinct from stalling of elongating RNA polymerase II complexes at the modified base.
Resumo:
Membrane proteins play an indispensable role in physiological processes. It is, therefore, not surprising that many diseases are based on the malfunction of membrane proteins. Hence membrane proteins and especially G-protein coupled receptors(GPCRs)- the largest subfamily- have become an important drug target. Due to their high selectivity and sensitivity membrane proteins are also feasible for the detection of small quantities of substances with biosensors. Despite this widespread interest in GPCRs due to their importance as drug targets and biosensors there is still a lack of knowledge of structure, function and endogenous ligands for quiet a few of the previously identified receptors.rnBottlenecks in over-expression, purification, reconstitution and handling of membrane proteins arise due to their hydrophobic nature. Therefore the production of reasonable amounts of functional membrane proteins for structural and functional studies is still challenging. Also the limited stability of lipid based membrane systems hampers their application as platforms forrnscreening applications and biosensors.rnIn recent years the in vitro protein synthesis became a promising alternative to gain better yields for expression of membrane proteins in bio-mimetic membrane systems. These expression systems are based on cell extracts. Therefore cellular effects on protein expression are reduced. The open nature of the cell-free expression systems easily allows for the adjustment of reactionrnconditions for the protein of interest. The cell-free expression in the presence of bio-mimetic membrane systems allows the direct incorporation of the membrane proteins and therefore skips the time-consuming purification and reconstitution processes. Amphiphilic block-copolymers emerged as promising alternative for the less stable lipid-based membrane systems. They, likernlipids, form membraneous structures in aqueous solutions but exhibit increased mechanical and chemical stability.rnThe aim of this work was the generation of a GPCR-functionalised membrane system by combining both promising alternatives: in vitro synthesis and polymeric membrane systems. This novel platform should be feasible for the characterisation of the incorporated GPCR. Immunodetection of Dopamine receptor 1 and 2 expressed in diblock- and triblock-polymersomes demonstrated the successful in vitro expression of GPCRs in polymeric membranes. Antibodyrnbinding studies suggested a favoured orientation of dopamine receptors in triblockpolymersomes.rnA dopamine-replacement assay on DRD2-functionalised immobilised triblockpolymersomes confirmed functionality of the receptor in the polymersomes. The altered binding curve suggests an effect of the altered hydrophobic environment presented by the polymer membrane on protein activity.
Resumo:
Summary Antibody-based cancer therapies have been successfully introduced into the clinic and have emerged as the most promising therapeutics in oncology. The limiting factor regarding the development of therapeutical antibody vaccines is the identification of tumor-associated antigens. PLAC1, the placenta-specific protein 1, was categorized for the first time by the group of Prof. Sahin as such a tumor-specific antigen. Within this work PLAC1 was characterized using a variety of biochemical methods. The protein expression profile, the cellular localization, the conformational state and especially the interacting partners of PLAC1 and its functionality in cancer were analyzed. Analysis of the protein expression profile of PLAC1 in normal human tissue confirms the published RT-PCR data. Except for placenta no PLAC1 expression was detectable in any other normal human tissue. Beyond, an increased PLAC1 expression was detected in several cancer cell lines derived of trophoblastic, breast and pancreatic lineage emphasizing its properties as tumor-specific antigen. rnThe cellular localization of PLAC1 revealed that PLAC1 contains a functional signal peptide which conducts the propeptide to the endoplasmic reticulum (ER) and results in the secretion of PLAC1 by the secretory pathway. Although PLAC1 did not exhibit a distinct transmembrane domain, no unbound protein was detectable in the cell culture supernatant of overexpressing cells. But by selective isolation of different cellular compartments PLAC1 was clearly enriched within the membrane fraction. Using size exclusion chromatography PLAC1 was characterized as a highly aggregating protein that forms a network of high molecular multimers, consisting of a mixture of non-covalent as well as covalent interactions. Those interactions were formed by PLAC1 with itself and probably other cellular components and proteins. Consequently, PLAC1 localize outside the cell, where it is associated to the membrane forming a stable extracellular coat-like structure.rnThe first mechanistic hint how PLAC1 promote cancer cell proliferation was achieved identifying the fibroblast growth factor FGF7 as a specific interacting partner of PLAC1. Moreover, it was clearly shown that PLAC1 as well as FGF7 bind to heparin, a glycosaminoglycan of the ECM that is also involved in FGF-signaling. The participation of PLAC1 within this pathway was approved after co-localizing PLAC1, FGF7 and the FGF7 specific receptor (FGFR2IIIb) and identifying the formation of a trimeric complex (PLAC1, FGF7 and the specific receptor FGFR2IIIb). Especially this trimeric complex revealed the role of PLAC1. Binding of PLAC1 together with FGF7 leads to the activation of the intracellular tyrosine kinase of the FGFR2IIIb-receptor and mediate the direct phosphorylation of the AKT-kinase. In the absence of PLAC1, no FGF7 mediated phosphorylation of AKT was observed. Consequently the function of PLAC1 was clarified: PLAC1 acts as a co-factor by stimulating proliferation by of the FGF7-FGFR2 signaling pathway.rnAll together, these novel biochemical findings underline that the placenta specific protein PLAC1 could be a new target for cancer immunotherapy, especially considering its potential applicability for antibody therapy in tumor patients.
Resumo:
The marine world is an immense source of biodiversity that provides substances with striking potentials in medicinal chemistry and biotechnology. Sponges (Porifera) are marine animals that represent the most impressive example of organisms possessing the ability to metabolise silica through a family of enzymes known as silicateins. Complex skeletal structures (spicules) made of pure biogenic silica (biosilica) are produced under physiological conditions. Biosilica is a natural material comprising inorganic and organic components with unique mechanical, optical, and physico-chemical properties, including promising potential to be used for development of therapeutic agents in regenerative medicine. Unravelling the intimate physiological mechanisms occurring in sponges during the construction of their siliceous spicules is an on-going project, and several questions have been addressed by the studies proposed by our working group. In this doctoral work, the recombinant DNA technology is exploited for functional and structural characterisation of silicatein. Its precursors are produced as fusion proteins with a chaperone tag (named TF-Ps), and a robust method for the overexpression of native soluble proteins in high concentrations has been developed. In addition, it is observed and proven experimentally that the maturation of silicatein is an autocatalytic event that: (i) can be modulated by rational use of protease inhibitors; (ii) is influenced by the temperature of the environment; (iii) only slightly depends on the pH. In the same experimental framework, observations on the dynamics in the maturation of silicateins allow a better understanding of how the axial filaments form during the early stages of spicule construction. In addition, the definition of new distinct properties of silicatein (termed “structure-guiding” and “structure-forming”) is introduced. By homology models and through comparisons with similar proteins (the cathepsins), domains with significant surface hydrophobicity are identified as potential self-assembly mediators. Moreover, a high-throughput screening showed that TF-Ps could generate crystals under certain conditions, becoming promising for further structural studies. With the goal of optimise the properties of the recombinant silicatein, implementation of new production systems are tried for the first time. Success in the expression of silicatein-type proteins in insect and yeast cells, constitute a promising basis for further development, towards the establishment of an efficient method for the production of a high-value pure and soluble protein.
Comparative functional analysis of factors controlling glial differentiation in Drosophila and mouse
Resumo:
The present study is a comparative functional analysis of three factors controlling glial differentiation in mouse (Fyn Src kinase, hnRNPF/H and NG2) and their homologues in Drosophila (Src42A and 64B, Glorund and Kon-tiki (Kon)). In Drosophila, mutations in any of these genes were not associated with major embryonic neurodevelopmental phenotypes. Src kinases and Glorund were shown to be ubiquitously expressed, whereas kon mRNA showed selective expression in muscles as well as in central and peripheral glia. Kon was also shown to be expressed in L3 larvae with high levels of protein accumulation at the neuromuscular junction (NMJ) and in muscles in the form of speckles. Knockdown of kon in glia resulted in NMJ phenotypes, mainly characterized by a significant increase in bouton number and a reduction in α-Konecto staining intensity at the NMJ. From the three glial layers ensheathing the peripheral nervous system, subperineurial glial showed to be the one contributing the most to kon knockdown dependent NMJ phenotypes, while perineurial glia only had a minor role. The knockdown of kon in glia also showed to affect Glutamate receptor subunit (α-GluRIIA) clustering in the postsynapse, same as microtubule arrangement in the presynapse, as seen by α-Futsch pattern interruptions and alterations. kon knockdown in glia also resulted in impaired axonal transport, as seen by the accumulation of Bruchpilot-positive vesicles along the nerves, abnormal formation of neuronal derived protrusions and swellings, filled with vacuole-like structures. Glia number along the peripheral nerves is also reduced as consequence of kon knockdown. Muscle derived Kon was shown to accumulate at the NMJ and play a role in bouton consolidation and to interfere with phagocytosis of ghost boutons. NMJ bouton and branch number was also significantly increased in Kon overexpression in glia. The overexpression of Kon in glia also resulted in a massive elongation of the ventral nerve cord, which served in a suppressor screen to identify intracellular interaction partners of Kon in glia. It was shown that Kon is processed in glia and preliminary results indicate that the metalloendopeptidase Kuzbanian (the fly homologue of ADAM10) may play a role in the shedding of Konecto. In the present work, Kon is shown as a multifunctional gene with various roles in glia-neuron and glia-neuron-muscle interaction.
Resumo:
Pheochromocytomas are rare neoplasias of neural crest origin arising from chromaffin cells of the adrenal medulla and sympathetic ganglia (extra-adrenal pheochromocytoma). Pheochromocytoma that develop in rats homozygous for a loss-of-function mutation in p27Kip1 (MENX syndrome) show a clear progression from hyperplasia to tumor, offering the possibility to gain insight into tumor pathobiology. We compared the gene-expression signatures of both adrenomedullary hyperplasia and pheochromocytoma with normal rat adrenal medulla. Hyperplasia and tumor show very similar transcriptome profiles, indicating early determination of the tumorigenic signature. Overrepresentation of developmentally regulated neural genes was a feature of the rat lesions. Quantitative RT-PCR validated the up-regulation of 11 genes, including some involved in neural development: Cdkn2a, Cdkn2c, Neurod1, Gal, Bmp7, and Phox2a. Overexpression of these genes precedes histological changes in affected adrenal glands. Their presence at early stages of tumorigenesis indicates they are not acquired during progression and may be a result of the lack of functional p27Kip1. Adrenal and extra-adrenal pheochromocytoma development clearly follows diverged molecular pathways in MENX rats. To correlate these findings to human pheochromocytoma, we studied nine genes overexpressed in the rat lesions in 46 sporadic and familial human pheochromocytomas. The expression of GAL, DGKH, BMP7, PHOX2A, L1CAM, TCTE1, EBF3, SOX4, and HASH1 was up-regulated, although with different frequencies. Immunohistochemical staining detected high L1CAM expression selectively in 27 human pheochromocytomas but not in 140 nonchromaffin neuroendocrine tumors. These studies reveal clues to the molecular pathways involved in rat and human pheochromocytoma and identify previously unexplored biomarkers for clinical use.
Resumo:
A genetic deficiency of the cysteine protease cathepsin L (Ctsl) in mice results in impaired positive selection of conventional CD4+ T helper cells as a result of an incomplete processing of the MHC class II associated invariant chain or incomplete proteolytic generation of positively selecting peptide ligands. The human genome encodes, in contrast to the mouse genome, for two cathepsin L proteases, namely cathepsin L (CTSL) and cathepsin V (CTSV; alternatively cathepsin L2). In the human thymic cortex, CTSV is the predominately expressed protease as compared to CTSL or other cysteine cathepsins. In order to analyze the functions of CTSL and CTSV in the positive selection of CD4+ T cells we employed Ctsl knock-out mice crossed either with transgenic mice expressing CTSL under the control of its genuine human promoter or with transgenic mice expressing CTSV under the control of the keratin 14 (K14) promoter, which drives expression to the cortical epithelium. Both human proteases are expressed in the thymus of the transgenic mice, and independent expression of both CTSL and CTSV rescues the reduced frequency of CD4+ T cells in Ctsl-deficient mice. Moreover, the expression of the human cathepsins does not change the number of CD4+CD25+Foxp3+ regulatory T cells, but the normalization of the frequency of conventional CD4+ T cell in the transgenic mice results in a rebalancing of conventional T cells and regulatory T cells. We conclude that the functional differences of CTSL and CTSV in vivo are not mainly determined by their inherent biochemical properties, but rather by their tissue specific expression pattern.
Resumo:
Recognition of drugs by immune cells is usually explained by the hapten model, which states that endogenous metabolites bind irreversibly to protein to stimulate immune cells. Synthetic metabolites interact directly with protein-generating antigenic determinants for T cells; however, experimental evidence relating intracellular metabolism in immune cells and the generation of physiologically relevant Ags to functional immune responses is lacking. The aim of this study was to develop an integrated approach using animal and human experimental systems to characterize sulfamethoxazole (SMX) metabolism-derived antigenic protein adduct formation in immune cells and define the relationship among adduct formation, cell death, costimulatory signaling, and stimulation of a T cell response. Formation of SMX-derived adducts in APCs was dose and time dependent, detectable at nontoxic concentrations, and dependent on drug-metabolizing enzyme activity. Adduct formation above a threshold induced necrotic cell death, dendritic cell costimulatory molecule expression, and cytokine secretion. APCs cultured with SMX for 16 h, the time needed for drug metabolism, stimulated T cells from sensitized mice and lymphocytes and T cell clones from allergic patients. Enzyme inhibition decreased SMX-derived protein adduct formation and the T cell response. Dendritic cells cultured with SMX and adoptively transferred to recipient mice initiated an immune response; however, T cells were stimulated with adducts derived from SMX metabolism in APCs, not the parent drug. This study shows that APCs metabolize SMX; subsequent protein binding generates a functional T cell Ag. Adduct formation above a threshold stimulates cell death, which provides a maturation signal for dendritic cells.
Resumo:
T-cells specific for foreign (e.g., viral) antigens can give rise to strong protective immune responses, whereas self/tumor antigen-specific T-cells are thought to be less powerful. However, synthetic T-cell vaccines composed of Melan-A/MART-1 peptide, CpG and IFA can induce high frequencies of tumor-specific CD8 T-cells in PBMC of melanoma patients. Here we analyzed the functionality of these T-cells directly ex vivo, by multiparameter flow cytometry. The production of multiple cytokines (IFNγ, TNFα, IL-2) and upregulation of LAMP-1 (CD107a) by tumor (Melan-A/MART-1) specific T-cells was comparable to virus (EBV-BMLF1) specific CD8 T-cells. Furthermore, phosphorylation of STAT1, STAT5 and ERK1/2, and expression of CD3 zeta chain were similar in tumor- and virus-specific T-cells, demonstrating functional signaling pathways. Interestingly, high frequencies of functionally competent T-cells were induced irrespective of patient's age or gender. Finally, CD8 T-cell function correlated with disease-free survival. However, this result is preliminary since the study was a Phase I clinical trial. We conclude that human tumor-specific CD8 T-cells can reach functional competence in vivo, encouraging further development and Phase III trials assessing the clinical efficacy of robust vaccination strategies.