889 resultados para FACIAL ASYMMETRY
Resumo:
We propose a computationally efficient and biomechanically relevant soft-tissue simulation method for cranio-maxillofacial (CMF) surgery. A template-based facial muscle reconstruction was introduced to minimize the efforts on preparing a patient-specific model. A transversely isotropic mass-tensor model (MTM) was adopted to realize the effect of directional property of facial muscles in reasonable computation time. Additionally, sliding contact around teeth and mucosa was considered for more realistic simulation. Retrospective validation study with postoperative scan of a real patient showed that there were considerable improvements in simulation accuracy by incorporating template-based facial muscle anatomy and sliding contact.
Resumo:
In many cases, it is not possible to call the motorists to account for their considerable excess in speeding, because they deny being the driver on the speed-check photograph. An anthropological comparison of facial features using a photo-to-photo comparison can be very difficult depending on the quality of the photographs. One difficulty of that analysis method is that the comparison photographs of the presumed driver are taken with a different camera or camera lens and from a different angle than for the speed-check photo. To take a comparison photograph with exactly the same camera setup is almost impossible. Therefore, only an imprecise comparison of the individual facial features is possible. The geometry and position of each facial feature, for example the distances between the eyes or the positions of the ears, etc., cannot be taken into consideration. We applied a new method using 3D laser scanning, optical surface digitalization, and photogrammetric calculation of the speed-check photo, which enables a geometric comparison. Thus, the influence of the focal length and the distortion of the objective lens are eliminated and the precise position and the viewing direction of the speed-check camera are calculated. Even in cases of low-quality images or when the face of the driver is partly hidden, good results are delivered using this method. This new method, Geometric Comparison, is evaluated and validated in a prepared study which is described in this article.
Resumo:
To clarify the patterns of frontobasal and frontosinal fractures in children and teenagers and to analyze whether the patterns relate to developmental stage of the facial skeleton.
Resumo:
The aim of this study was to compare craniofacial morphology and soft tissue profiles in patients with complete bilateral cleft lip and palate at 9 years of age, treated in two European cleft centres with delayed hard palate closure but different treatment protocols. The cephalometric data of 83 consecutively treated patients were compared (Gothenburg, N=44; Nijmegen, N=39). In total, 18 hard tissue and 10 soft tissue landmarks were digitized by one operator. To determine the intra-observer reliability 20 cephalograms were digitized twice with a monthly interval. Paired t-test, Pearson correlation coefficients and multiple regression models were applied for statistical analysis. Hard and soft tissue data were superimposed using the Generalized Procrustes Analysis. In Nijmegen, the maxilla was protrusive for hard and soft tissue values (P=0.001, P=0.030, respectively) and the maxillary incisors were retroclined (P<0.001), influencing the nasolabial angle, which was increased in comparison with Gothenburg (P=0.004). In conclusion, both centres showed a favourable craniofacial form at 9-10 years of age, although there were significant differences in the maxillary prominence, the incisor inclination and soft tissue cephalometric values. Follow-up of these patients until facial growth has ceased, may elucidate components for outcome improvement.
Resumo:
The purpose of this retrospective radiographic study was to analyze the thickness of the facial bone wall at teeth in the anterior maxilla based on cone beam computed tomography (CBCT) images, since this anatomical structure is important for the selection of an appropriate treatment approach in patients undergoing postextraction implant placement. A total of 125 CBCT scans met the inclusion criteria, resulting in a sample size of 498 teeth. The thickness of the facial bone wall in the respective sagittal scans was measured perpendicular to the long axis of the tooth at two locations: at the crest level (4 mm apical to the cementoenamel junction; MP1) and at the middle of the root (MP2). No existing bone wall was found in 25.7% of all teeth at MP1 and in 10.0% at MP2. The majority of the examined teeth exhibited a thin facial bone wall (< 1 mm; 62.9% at MP1, 80.1% at MP2). A thick bone wall (? 1 mm) was found in only 11.4% of all examined teeth at MP1 and 9.8% at MP2. There was a statistically significant decrease in facial bone wall thickness from the first premolars to the central incisors. The facial bone wall in the crestal area of teeth in the anterior maxilla was either missing or thin in roughly 90.0% of patients. Both a missing and thin facial wall require simultaneous contour augmentation at implant placement because of the well-documented bone resorption that occurs at a thin facial bone wall following tooth extraction. Consequently, radiographic analysis of the facial bone wall using CBCT prior to extraction is recommended for selection of the appropriate treatment approach.
Resumo:
This study examines the links between human perceptions, cognitive biases and neural processing of symmetrical stimuli. While preferences for symmetry have largely been examined in the context of disorders such as obsessive-compulsive disorder and autism spectrum disorders, we examine various these phenomena in non-clinical subjects and suggest that such preferences are distributed throughout the typical population as part of our cognitive and neural architecture. In Experiment 1, 82 young adults reported on the frequency of their obsessive-compulsive spectrum behaviors. Subjects also performed an emotional Stroop or variant of an Implicit Association Task (the OC-CIT) developed to assess cognitive biases for symmetry. Data not only reveal that subjects evidence a cognitive conflict when asked to match images of positive affect with asymmetrical stimuli, and disgust with symmetry, but also that their slowed reaction times when asked to do so were predicted by reports of OC behavior, particularly checking behavior. In Experiment 2, 26 participants were administered an oddball Event-Related Potential task specifically designed to assess sensitivity to symmetry as well as the OC-CIT. These data revealed that reaction times on the OC-CIT were strongly predicted by frontal electrode sites indicating faster processing of an asymmetrical stimulus (unparallel lines) relative to a symmetrical stimulus (parallel lines). The results point to an overall cognitive bias linking disgust with asymmetry and suggest that such cognitive biases are reflected in neural responses to symmetrical/asymmetrical stimuli.
Resumo:
Music is capable of inducing emotional arousal. While previous studies used brief musical excerpts to induce one specific emotion, the current study aimed to identify the physiological correlates of continuous changes in subjective emotional states while listening to a complete music piece. A total of 19 participants listened to the first movement of Ludwig van Beethoven's 5th symphony (duration: ~7.4 min), during which a continuous 76-channel EEG was recorded. In a second session, the subjects evaluated their emotional arousal during the listening. A fast fourier transform was performed and covariance maps of spectral power were computed in association with the subjective arousal ratings. Subjective arousal ratings had good inter-individual correlations. Covariance maps showed a right-frontal suppression of lower alpha-band activity during high arousal. The results indicate that music is a powerful arousal-modulating stimulus. The temporal dynamics of the piece are well suited for sequential analysis, and could be necessary in helping unfold the full emotional power of music.