898 resultados para Extrusion dies
Resumo:
In the mate-guarding amphipod, Gammarus pulex, the enlarged male posterior gnathopods have been variously suggested to function to grasp and subdue the female, to be used as weapons in fights between males, to signal to the female the male presence and stimulate moult accelaration, egg development or egg extrusion. These hypotheses were tested in a series of experiments, the results of which reveal an unexpected function. Ablation of the posterior gnathopods of males showed that they were neither necessary for, nor advantageous in, establishment and/ or maintenance of precopula mate guarding, with or without competition with intact males. Furthermore, these appendages do not function to advance female moult, or stimulate egg development or extrusion. However, only males with intact posterior gnathopods were able to copulate. We also show that females require a full copulation of several bouts to extrude eggs. We conclude that the function of the posterior gnathopods is to facilitate copulation and suggest future studies focus on the selective pressures acting on copulating males.
Resumo:
Mixtures of glycine, glucose, and starch were extrusion cooked using sodium hydroxide at 0, 3, and 6 g/L of extruder water feed, 18% moisture, and 120, 150, and 180 degreesC target die temperatures, giving extrudates with pH values of 5.6, 6.8, and 7.4. Freeze-dried equimolar solutions of glucose and glycine were heated either dry or after equilibration to similar to 13% moisture at 180 degreesC in a reaction-tube system designed to mimic the heating profile in an extruder. Volatile compounds were isolated onto Tenax and analyzed by gas chromatography-mass spectrometry. For the extrudates, total yields of volatiles increased with decreasing pH at 180 degreesC, reached a maximum at pH 6.S at 150 degreesC, and increased with increasing pH at 120 degreesC. Amounts increased with temperature at all pH values. Pyrazines were the most abundant class for all sets of conditions (54-79% of total volatiles). Pyrroles, ketones, furans, oxazoles, and pyridines were also identified. Yields of volatiles from the reaction-tube samples increased by > 60% in the moist system. Levels of individual classes also increased in the presence of moisture, except pyrazines, which decreased similar to3.5-fold. Twenty-one of the compounds were common to the reaction-tube samples and the extrudates.
Resumo:
The work described in this paper demonstrates a combined novel approach to the preparation of drug loaded poly(e-caprolactone) layered silicate nanocomposites using hot melt extrusion, a continuous process in contrast to the normal batch type processing used to prepare polymeric drug delivery systems, and most significantly the use of high surface area, large aspect ratio inorganic nanoplatelets to retard drug release. The methodology and results described in this article are significant and could equally be applied to the controlled/retarded release of any bio-active molecule (pharmaceutical, nutraceutical, protein, DNA/iRNA, anti-microbial, anti-coagulant, etc.) from biopolymers and the production of medical devices from such composite materials.
Resumo:
Polymer nanocomposites offer the potential of enhanced properties such as increased modulus and barrier properties to the end user. Much work has been carried out on the effects of extrusion conditions on melt processed nanocomposites but very little research has been conducted on the use of polymer nanocomposites in semi-solid forming processes such as thermoforming and injection blow molding. These processes are used to make much of today’s packaging, and any improvements in performance such as possible lightweighting due to increased modulus would bring signi?cant bene?ts both economically and environmentally. The work described here looks at the biaxial deformation of polypropylene–clay nanocomposites under industrial forming conditions in order to determine if the presence of clay affects processability, structure and mechanical properties of the stretched material. Melt compounded polypropylene/clay composites in sheet form were biaxially stretched at a variety of processing conditions to examine the effect of high temperature, high strain and high strain rate processing on sheet structure
and properties.
A biaxial test rig was used to carry out the testing which imposed conditions on the sheet that are representative of those applied in injection blow molding and thermoforming. Results show that the presence of clay increases the yield stress relative to the un?lled material at typical processing temperatures and that the sensitivity of the yield stress to temperature is greater for the ?lled material. The stretching process is found to have a signi?cant effect on the delamination and alignment of clay particles (as observed by TEM) and on yield stress and elongation at break of the stretched sheet.
Resumo:
Composites of poly(e-caprolactone) (PCL) and molybdenum sulfur iodine (MoSI) nanowires were prepared using twin-screw extrusion. Extensive microscopic examination of the composites revealed the nanowires were well dispersed in the PCL matrix, although bundles of Mo6S3I6 ropes were evident at higher loadings. Secondary electron imaging (SEI) showed the nanowires had formed an extensive network throughout the PCL matrix, resulting in increased electrical conductivity of PCL, by eight orders of magnitude, and an electrical percolation threshold of 6.5T10S3vol%. Thermal analysis (DSC), WAXD, and hot stage polarized optical microscopy (HSPOM) experiments revealed Mo6S3I6 addition altered PCL crystallization kinetics, nucleation density, and crystalline content. A greater number of smaller spherulites were formed via heterogeneous nucleation. The onset of thermal decomposition (TGA) of PCL decreased by 70-C, a consequence of the thermal degradation of Mo6S3I6 to MoO3, which in turn accelerates the formation of volatile gases during the first stage of PCL decomposition.
Resumo:
Formulation of Celecoxib into solid dosage forms is difficult due to the physical properties of the drug powder. However for the first time, this paper reports on the drug delivery characteristics glass solutions of celecoxib and polyvinylpyrrolidone prepared by hot melt extrusion, together with use of supercritical carbon dioxide to achieve a porous structure, in order to achieve a stable and enhanced drug release.
Resumo:
Solid molecular dispersions of bicalutamide (BL) and polyvinylpyrrolidone (PVP) were prepared by hot melt extrusion technology at drug-to-polymer ratios of 1:10, 2:10, and 3:10 (w/w). The solid-state properties of BL, physical mixtures of BL/PVP, and hot melt extrudates were characterized using differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), Raman, and Fourier transform infrared (FTIR) spectroscopy. Drug dissolution studies were subsequently conducted on hot melt extruded solid dispersions and physical mixtures. All hot melt extrudates had a single Tg between theTg of amorphous BL and PVP indicating miscibility of BL with PVP and the formation of solid molecular dispersions. PXRD con?rmed the presence of the amorphous form of BL within the extrudates. Conversely, PXRD patterns recorded for physical mixtures showed sharp bands characteristic of crystalline BL, whereas DSC traces had a distinct endotherm at 1968C corresponding to melting of crystalline BL. Further investigations using DSC con?rmed solid-state plasticization of PVP by amorphous BL and hence antiplasticization of amorphous BL by PVP. Experimentally observed Tg values of physical mixtures were shown to be signi?cantly higher than those calculated using the Gordon–Taylor equation suggesting the formation of strong intermolecular interactions between BL and PVP. FTIR and Raman spectroscopy were used to investigate these interactions and strongly suggested the presence of secondary interaction between PVP and BL within the hot melt extrudates. The drug dissolution properties of hot melt extrudates were enhanced signi?cantly in comparison to crystalline BL and physical mixtures. Moreover, the rate and extent of BL release were highly dependent on the amount of PVP present within the extrudate. Storage of the extrudates con?rmed the stability of amorphous BL for up to 12 months at 208C, 40% RH whereas stability was reduced under highly humid conditions (208C, 65% RH). Interestingly, BL recrystallization after storage under these conditions had no effect on the dissolution properties of the extrudates.
Resumo:
In this study, the dissolution properties of celecoxib (CX) solid dispersions manufactured from Eudragit 4155F and polyvinylpyrrolidone (PVP) were evaluated. Hot-melt extrusion (HME) technology was used to prepare amorphous solid dispersions of drug/polymer binary systems at different mass ratios. The drug concentrations achieved from the dissolution of PVP and Eudragit 4155F solid dispersions in phosphate buffer, pH 7.4 (PBS 7.4) were significantly greater than the equilibrium solubility of CX (1.58 µg/mL). The degree of supersaturation increased significantly as the polymer concentration within the solid dispersion increased. The maximum drug concentration achieved by PVP solid dispersions did not significantly exceed the apparent solubility of amorphous CX. The predominant mechanism for achieving supersaturated CX concentrations in PBS 7.4 was attributed to stabilization of amorphous CX during dissolution. Conversely, Eudragit 4155F solid dispersions showed significantly greater supersaturated drug solutions particularly at high polymer concentrations. For example, at a drug/polymer ratio of 1:9, a concentration of 100 µg/mL was achieved after 60 min that was stable (no evidence of drug recrystallization) for up to 72 h. This clearly identifies the potential of Eudragit 4155F to act as a solubilizing agent for CX. These findings were in good agreement with the results from solubility performed using PBS 7.4 in which Eudragit 4155F had been predissolved. In these tests, Eudragit 4155F significantly increased the equilibrium solubility of CX. Solution 1H NMR spectra were used to identify drug/polymer interactions. Deshielding of CX aromatic protons (H-1a and H-1b) containing the sulfonamide group occurred as a result of dissolution of Eudragit 4155F solid dispersions, whereas deshielding of H-1a protons and shielding of H-1b protons occurred as a result of the dissolution of PVP solid dispersions. In principle, it is reasonable to suggest that the different drug/polymer interactions observed give rise to the variation in dissolution observed for the two polymer/drug systems.
Resumo:
In polymer extrusion, the delivery of a melt which is homogenous in composition and temperature is paramount for achieving high quality extruded products. However, advancements in process control are required to reduce temperature variations across the melt flow which can result in poor product quality. The majority of thermal monitoring methods provide only low accuracy point/bulk melt temperature measurements and cause poor controller performance. Furthermore, the most common conventional proportional-integral-derivative controllers seem to be incapable of performing well over the nonlinear operating region. This paper presents a model-based fuzzy control approach to reduce the die melt temperature variations across the melt flow while achieving desired average die melt temperature. Simulation results confirm the efficacy of the proposed controller.
Resumo:
In this article, we have prepared hot-melt-extruded solid dispersions of bicalutamide (BL) using poly(ethylene oxide) (PEO) as a matrix platform. Prior to preparation, miscibility of PEO and BL was assessed using differential scanning calorimetry (DSC). The onset of BL melting was signi?cantly depressed in the presence of PEO, and using Flory– Huggins (FH) theory, we identi?ed a negative value of -3.4, con?rming miscibility. Additionally, using FH lattice theory, we estimated the Gibbs free energy of mixing which was shown to be negative, passing through a minimum at a polymer fraction of 0.55. Using these data, solid dispersions at drug-to-polymer ratios of 1:10, 2:10 and 3:10 were prepared via hot-melt extrusion. Using a combination of DSC, powder X-ray diffractometry and scanning electron
microscopy, amorphous dispersions of BL were con?rmed at the lower two drug loadings. At the 3:10 BL to PEO ratio, crystalline BL was detected. The percent crystallinity of PEO was reduced by approximately 10% in all formulations following extrusion. The increased amorphous content within PEO following extrusion accommodated amorphous BL at drug to polymer loadings up to 2:10; however, the increased amorphous domains with PEO following extrusion were not suf?cient to fully accommodate BL at drug-to-polymer ratios of 3:10.
Resumo:
In collaboration with Airbus-UK, the dimensional growth of aircraft panels while being riveted with stiffeners is investigated. Small panels are used in this investigation. The stiffeners have been fastened to the panels with rivets and it has been observed that during this operation the panels expand in the longitudinal and transverse directions. It has been observed that the growth is variable and the challenge is to control the riveting process to minimize this variability. In this investigation, the assembly of the small panels and longitudinal stiffeners has been simulated using static stress and nonlinear explicit finite element models. The models have been validated against a limited set of experimental measurements; it was found that more accurate predictions of the riveting process are achieved using explicit finite element models. Yet, the static stress finite element model is more time efficient, and more practical to simulate hundreds of rivets and the stochastic nature of the process. Furthermore, through a series of numerical simulations and probabilistic analyses, the manufacturing process control parameters that influence panel growth have been identified. Alternative fastening approaches were examined and it was found that dimensional growth can be controlled by changing the design of the dies used for forming the rivets.
Resumo:
Knowledge on the life span of the riveting dies used in the automotive industry is sparse. It is often the case that only when faulty products are produced are workers aware that their tool needs to be changed. This is of course costly both in terms of time and money. Responding to this challenge, this paper proposes a methodology which integrates wear and stress analysis to quantify the life of a riveting die. Experiments are carried out to measure the applied load required to split a rivet. The obtained results (i.e. force curves) are used to validate the wear mechanisms of the die observed using scanning electron microscopy. Sliding, impact, and adhesive wears are observed on the riveting die after a certain number of riveting cycles. The stress distribution on the die during riveting is simulated using a finite element (FE) approach. In order to confirm the accuracy of the FE model, the experimental force results are compared with the ones produced from FE simulation. The maximum and minimum von Mises' stresses generated from the FE model are input into a Goodman diagram and an S-N curve to compute the life of the riveting die. It is found that the riveting die is predicted to run for 4 980 000 cycles before failure.
Resumo:
Polymer extrusion, in which a polymer is melted and conveyed to a mould or die, forms the basis of most polymer processing techniques. Extruders frequently run at non-optimised conditions and can account for 15–20% of overall process energy losses. In times of increasing energy efficiency such losses are a major concern for the industry. Product quality, which depends on the homogeneity and stability of the melt flow which in turn depends on melt temperature and screw speed, is also an issue of concern of processors. Gear pumps can be used to improve the stability of the production line, but the cost is usually high. Likewise it is possible to introduce energy meters but they also add to the capital cost of the machine. Advanced control incorporating soft sensing capabilities offers opportunities to this industry to improve both quality and energy efficiency. Due to strong correlations between the critical variables, such as the melt temperature and melt pressure, traditional decentralized PID (Proportional–Integral–Derivative) control is incapable of handling such processes if stricter product specifications are imposed or the material is changed from one batch to another. In this paper, new real-time energy monitoring methods have been introduced without the need to install power meters or develop data-driven models. The effects of process settings on energy efficiency and melt quality are then studied based on developed monitoring methods. Process variables include barrel heating temperature, water cooling temperature, and screw speed. Finally, a fuzzy logic controller is developed for a single screw extruder to achieve high melt quality. The resultant performance of the developed controller has shown it to be a satisfactory alternative to the expensive gear pump. Energy efficiency of the extruder can further be achieved by optimising the temperature settings. Experimental results from open-loop control and fuzzy control on a Killion 25 mm single screw extruder are presented to confirm the efficacy of the proposed approach.
Resumo:
This study describes an innovative monolith structure designed for applications in automotive catalysis using an advanced manufacturing approach developed at Imperial College London. The production process combines extrusion with phase inversion of a ceramic-polymer-solvent mixture in order to design highly ordered substrate micro-structures that offer improvements in performance, including reduced PGM loading, reduced catalyst ageing and reduced backpressure.
This study compares the performance of the novel substrate for CO oxidation against commercially available 400 cpsi and 900 cpsi catalysts using gas concentrations and a flow rate equivalent to those experienced by a full catalyst brick when attached to a vehicle. Due to the novel micro-structure, no washcoat was required for the initial testing and 13 g/ft3 of Pd was deposited directly throughout the substrate structure in the absence of a washcoat.
Initial results for CO oxidation indicate that the advanced micro-structure leads to enhanced conversion efficiency. Despite an 79% reduction in metal loading and the absence of a washcoat, the novel substrate sample performs well, with a light-off temperature (LOT) only 15 °C higher than the commercial 400 cpsi sample.
To test the effects of catalyst ageing on light-off temperature, each sample was aged statically at a temperature of 1000 °C, based on the Bench Ageing Time (BAT) equation. The novel substrate performed impressively when compared to the commercial samples, with a variation in light-off temperature of only 3% after 80 equivalent hours of ageing, compared to 12% and 25% for the 400 cpsi and 900 cpsi monoliths, respectively.
Resumo:
Hospital-acquired infections pose both a major risk to patient wellbeing and an economic burden on global healthcare systems, with the problem compounded by the emergence of multidrug resistant and biocide tolerant bacterial pathogens. Many inanimate surfaces can act as a reservoir for infection, and adequate disinfection is difficult to achieve and requires direct intervention. In this study we demonstrate the preparation and performance of materials with inherent photodynamic, surface-active, persistent antimicrobial properties through the incorporation of photosensitizers into high density poly(ethylene) (HDPE) using hot-melt extrusion, which require no external intervention except a source of visible light. Our aim is to prevent bacterial adherence to these surfaces and eliminate them as reservoirs of nosocomial pathogens, thus presenting a valuable advance in infection control. A two-layer system with one layer comprising photosensitizer-incorporated HDPE, and one layer comprising HDPE alone is also described to demonstrate the versatility of our approach. The photosensitizer-incorporated materials are capable of reducing the adherence of viable bacteria by up to 3.62 Log colony forming units (CFU) per square centimeter of material surface for methicillin resistant Staphylococcus aureus (MRSA), and by up to 1.51 Log CFU/cm2 for Escherichia coli. Potential applications for the technology are in antimicrobial coatings for, or materials comprising objects, such as tubing, collection bags, handrails, finger-plates on hospital doors, or medical equipment found in the healthcare setting.