576 resultados para Extrudate swell
Resumo:
Samples from sutface sediments of the shell, continental slope, and adjacent deep sea regions off West Africa between 27° N and 15° N were investigated with respect to grain size distribution of the total samples, sand contents of the acid insoluble residues, carbonate content of the total samples, and the separate grain size fractions, specific surfaces, colours and mineralogical composition of the clay fractions. The grain size distributions of the total samples of the sediments of the shelf and the continental slope off Spanish-Sahara are controlled mainly by biogenic components. The supply of terrigeneous material in this area is very low. At deeper parts of the continental slope and in the deep sea areas, the relative amounts of carbonate minerals in the sediments are considerably reduced. The prevailing sand contents of the upper slope changes into clay dominance. On the shelf of Mauritania - represented by profiles extending down to 200 m water depth - the grain size is also controlled mainly by biogenic carbonates. Nevertheless, the admixture of fossil silicate components is important, too. The southern parts of the area is investigated are located in a region influenced by sediments of the Senegal River, which especially control the contents of silt and clay. The silicate sands, predominately of quartz, are fossil and form a mixed sediment with younger deposits. The carbonate contents of the different grain size fractions are formed either by sedimentation of carbonate and silicate particles of the respective grain size or by autochtonous disintegration of coarser sediment particles, as shown by the occurence of Mg-rich calcite and especially aragonite in the clay sized fraction. In the northern parts of the area investigated, which have very minute terrigeneous supply, the latter mechanism is the dominant factor, controlling the carbonate contents of the fine grain sized fractions. In the vicinity of the mouth of the Senegal the carbonate contents are influenced by extremely high dilution with terrigencous silicates. Mg-rich calcite and aragonite are produced preferentially in shallow slope and shelf areas up to 500 m of water depth. The specific surfaces of the carbonate-free clay fractions indicate that the clay fractions of the shelfareas with little terrigenous supply consits of relatively coarser particles. Very fine particles are removed and transported towards the deep sea. Lateral differentiation of this kind was not observed in the area off Senegal. The high surface areas, characterizing the clay fractions of this region, are thought to be due to high montmorillonite contents as was found for deep seas sediments. The mineralogical composition of the clay fraction from the southern parts of the area is characterized by high kaolinite and montmorillonite contents, while in the northern illite is predominating. At least two types of montmorillionites are present: in areas influenced by the Senegal mostly one type was found, which could swell to 17; on the shelves and slopes of the other regions the montmorillonite-group is represented by a montmorillonite-mica-type mixed-layer mineral. A "glauconite", found in the sand fraction, which had very similar properties to those of the montmorillonite-mica mixed-layer, is believed to be the source of this mixed-layer-type mineral. Palygorskite is present in all samples out of range of the Senegal supply. It may be an indicator of eolian transported material. The occurence of rich palygorskit deposits in the arid hinterlands emphasizes the terrestrial origin.
Resumo:
The sandfraction of the sediment was analysed in five cores, taken from 65 m water depth in the central and eastern part of the Persian Gulf. The holocene marls are underlayn by aragonite muds, which are probably 10-11,000 years old. 1. The cores could be subdivided into coarse grained and fine grained layers. Sorting is demonstrated by the following criteria: With increasing median values of the sandfraction - the fine grained fraction decreases within each core; - the median of each biogenic component, benthonic as well as planktonic, increases; - the median of the relict sediment, which in core 1179 was carried upward into the marl by bioturbation, increases; - the percentages of pelecypods, gastropods, decapods and serpulid worms in the sandfraction increase, the percentages of foraminifera and ostracods decrease; - the ratios of pelecypods to foraminifera and of decapods to ostracods increase; - the ratios of benthonic molluscs to planktonic molluscs (pteropods) and of benthonic foraminifera to planktonic foraminifera increase (except in core 1056 and 1179); - the ratio of planktonic molluscs (pteropods) to planktonic foraminifera increases; - the globigerinas without orbulinas increase, the orbulinas decrease in core 1056. Different settling velocities of these biogenic particles help in better understanding the results : the settling velocities, hence the equivalent hydrodynamic diameters, of orbulinas are smaller than those of other globigerinas, those of planktonic foraminifera are smaller than those of planktonic molluscs, those of planktonic molluscs are smaller than those of benthonic molluscs, those of pelecypods are smaller than those of gastropods. Bioturbation could not entirely distroy this "grain-size-stratification". Sorting has been stronger in the coarse layers than in the finer ones. As a cause variations in the supply of terrigenous material at constant strength of tidal currents is suggested. When much terrigenous material is supplied (large contents of fine grained fraction) the sedimentation rates are high: the respective sediment surface is soon covered and removed from the influence of tidal currents. When, however, the supply of terrigenous material is small, more sandy material is taken away in all locations within the influence of terrigenous supply. Thus the biogenic particles in the sediment do not only reflect the organic production, but also the influence of currents. 2. There is no parameter present in all cores that is independently variable from grain size and can be used for stratigraphic correlation. The two cores from the Strait of Hormus were correlated by their sequences of coarse and fine grained layers. 3. The sedimentation rates of terrigenous material, of total planktonic and benthonic organisms and of molluscs, foraminifera, echinoids and ophiuroids are shown in table 1 (total sediment 6.3-75.5 cm/1000 yr, biogenic carbonate 1.9-3.6 cm/1000 yr). The sedimentation rates of benthonic organisms are nearly the same in the cores of the Strait of Hormus, whereas near the Central Swell they are smaller. In the upper parts of the two cores of the Strait of Hormus sedimentation rates are higher than in the deeper parts, where higher median values point to stronger reworking. 4. The sequence of coarse and fine grained intervals in the two cores of the Hormus Strait, attributed to variations in climate, as well as the increase of terrigenous supply from the deeper to the upper parts of the cores, agrees with the descriptions in the literature of the post Pleistocene climate as becoming more humid. The rise of sea level is sedimentologically not measurable in the marly sediments - except perhaps for the higher content of echinoids in the lower part of core 1056. These may be attributed to the influence of a migrating wave-base. 5. The late Pleistocene aragonite mud is very fine grained (> 50%< 2 p) and poor in fossils (0.5-1.8%) biogenic particles of total sediment. The sand fraction consists almost entirely of white clumps, c. 0.1 mm in diameter (1177), composed of aragonite needles and of detrital minerals with the same size (1201). The argonite mud was probably not formed in situ, because the water depth at time of formation was at most 35 m at least 12 m. The sorting of the sediment (predominance of the fine grained sand), the absence of larger biogenic components and of pellets, c. 0.2-0.5 mm in diameter, which are typical for Recent and Pleistocene locations of aragonite formation, as well as the sedimentological conditions near the sampling points, indicate rather a transport of aragonite mud from an area of formation in very shallow waters. Sorting as well as lenticular fabric in core 1201 point to sedimentation within the influence of currents. During alternating sedimentation - and reworking processes the aragonitic matrix was separated from the silt - and sand-sized minerals. The lenses grade into touches because of bioturbation. 6. In core 1056 D2 from Hormus Bay the percentages of organic carbon, total nitrogen and total carbonate were determined. With increasing amounts of smaller grain sizes the content of organic matter increases, whereas the amount of carbonate decreases. The amounts of organic carbon and of nitrogen decrease with increasing depth, probably due to early-diagenetic decomposition processes. Most of the total nitrogen is of organic origin, only about 10% may well be inorganically fixed as ammonium-nitrogen. In the upper part of the core the C/N-ratio increases with increasing depth. This may be connected with a stronger decomposition of nitrogen-containing organic compounds. The general decrease of the C/N-ratios in the lower part of the core may be explained by the relative increase of inorganically fixed ammonium-nitrogen with decreasing content of organic matter.
Resumo:
Cross-linked homopolymers and copolymers of 2-hydroxyethyl methacrylate, HEMA, and ethylene glycol methacrylate phosphate, MOEP, have been synthesized, and the diffusion of water into these systems has been investigated. Only polymers with 0-20 mot % MOEP exhibited ideal swelling behavior as extensive fracturing occurred in the systems with greater than 20 mot % MOEP as the polymers began to swell during water sorption. Gravimetric studies were used in conjunction with magnetic resonance imaging of the diffusion front to elucidate the diffusion mechanism for these systems. In the case of the cross-linked HEMA homopolymer gets, the water transport mechanism was determined to be concentration-independent Fickian diffusion. However, as the fraction of MOEP in the network increased, the transport mechanism became increasingly exponentially concentration-dependent but remained Fickian until the polymer consisted of 30 mot % MOEP where the water transport could no longer been described by Fickian diffusion.
Resumo:
The ingress of water and Kokubo simulated body fluid (SBF) into poly (2-hydroxyethyl methacrylate) (PHEMA), and its co-polymers with tetrahydrofurduryl methacrylate (THFMA), loaded with either one of two model drugs, vitamin 1312 or aspirin, was studied by mass uptake over the temperature range 298-318 K. The polymers were studied as cylinders and were loaded with either 5 wt% or 10 wt% of the drugs. From DSC studies it was observed that vitamin B-12 behaved as a physical cross-linker restricting chain segmental mobility, and so had a small anti-plasticisation effect on PHEMA and the co-polymers rich in HEMA, but almost no effect on the T-g of co-polymers rich in THFMA. On the other hand, aspirin exhibited a plasticising effect on PHEMA and the copolymers. All of the polymers were found to absorb water and SBF according to a Fickian diffusion mechanism. The polymers were all found to swell to a greater extent in SBF than in water, which was attributed to the presence of Tris buffer in the SBF. The sorptions of the two penetrants were found to follow Fickian kinetics in all cases and the diffusion coefficients at 310 K for SBF were found to be smaller than those for water, except for the polymers containing aspirin where the diffusion coefficients were higher than for the other systems. For example, for sorption into PHEMA the diffusion coefficient for water was 1.41 X 10(-11) m(2)/s and for SBF was 0.79 x 10-11 m(2)/s, but in the presence of 5 wt% aspirin the corresponding values were 1.27 x 10(-1)1 m(2)/s and 1.25 x 10(-11) m(2)/s, respectively. The corresponding values for PHEMA loaded with 5 wt% B-12 were 1.25 x 10(-11) m(2)/s and 0.74 x 10(-11) m(2)/s, respectively.
Resumo:
Glycerate-based surfactants are a new class of swelling amphiphiles which swell to a finite degree with water. Among this class of surfactants, oleyl (cis-octadec-9-enyl) glycerate is very similar in structure to a well characterized mesophase-forming lipid, glyceryl monooleate (GMO). Despite the similar structural characteristics, a subtle change in connectivity of the ester bond substantially alters the binary surfactant-water phase behaviour. Whereas the phase behaviour of GMO is diverse and dominated by cubic phases, the phase behaviour of oleyl glycerate and a terpenoid analogue phytanyl (3,7,11,15-tetramethyl-hexadecane) glycerate is much simplified. Both exhibit an inverse hexagonal phase (H-II), which is stable to dilution with excess water, and an inverse micellar phase (L-II) at ambient temperatures. The inverse hexagonal phases formed by oleyl glycerate and phytanyl glycerate have been characterized using SAXS. Analogous to GMO cubosomes, the inverse hexagonal phase of phytanyl glycerate has been dispersed to form hexagonally facetted particles, termed hexosomes, whose structure has been verified using cryo-TEM.
Resumo:
d-Limonene was encapsulated with beta-cyclodextrin to improve its retention during pre-added flavour starch extrusion. The objective of this work was to determine the effect of processing condition on the flavour retention and extrudate properties. Corn starch containing five levels of beta-cyclodextrin-d-limonene capsules (0-5%) were extruded at five different maximum barrel temperatures (133-167 degrees C) and screw speeds (158-242 rpm) using a twin screw extruder. The effect of these parameters on the flavour retention, expansion, texture, colour difference (Delta E), Water Absorption Index, Water Solubility Index, and residence time distribution (RTD) were investigated. Barrel temperature and capsule level predominantly influenced flavour retention and extrudate properties, while screw speed primarily affected extruder performances such as torque, die pressure, specific mechanical energy and RTD. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this research was to investigate the retention of flavour volatiles encapsulated in water-insoluble systems during high temperature–short time extrusion process. A protein precipitation method was used to produce water-insoluble capsules encapsulating limonene, and the capsules were added to the extruder feed material (cornstarch). A twin-screw extruder was used to evaluate the effect of capsule level of addition (0–5%), barrel temperature (125–145 °C) and screw speed (145–175 r.p.m.) on extruder parameters (torque, die pressure, specific mechanical energy, residence time distribution) and extrudate properties [flavour retention, texture, colour, density, expansion, water absorption index, water solubility index (WSI)]. Capsule level had a significant effect on extrusion conditions, flavour retention and extrudate physical properties. Flavour retention increased with the increase in capsule level from 0% to 2.5%, reached a maximum value at capsule level of 2.5% and decreased when the capsule level increased from 2.5% to 5%. The die pressure, torque, expansion ratio, hardness and WSI exhibited the opposite effect with the presence of capsules.
Resumo:
Hydrogels are a unique class of polymers which swell, but do not dissolve in water. A range of 2-hydroxyethyl methacrylate based copolymer hydrogels have been synthesised and are described in this thesis. Initially, hydrogels were synthesised containing acryloylmorpholine, N,N-dimethyl acrylamide and N-vinyl pyrrolidone. Variations in structure and composition have been correlated with the sequence distribution, equilibrium water content (EWC) , mechanical and surface properties of the hydrogels. The sequence distribution was found to be dependant on the structure and reactivity of the monomers. The EWC was found to be dependant on the water structuring groups present in the hydrogel, although the water binding abilities were modified by steric effects. The mechanical properties were also investigated and were found to be dependant on the monomer structure, sequence distribution and the amount and nature of water in the hydrogel. The macroscopic surface properties of the hydrogels were probed using surface energy determinations and were found to be a function of the water content and the hydrogel composition. At a molecular level, surface properties were investigated using an in vitro ocular spoilation model and single protein adhesion studies. The results indicate that the sequence distribution and the polarity of the surface affect the adhesion of biological species. Finally, a range of 2-hydroxyethyl methacrylate based copolymer hydrogels containing both charged monomer groups and linear polyethers have been synthesised and described. Although variations in the EWC are observed with the structure of the monomers, it was observed that the EWC increased due to the polar character of the charged monomers and the chain length and hydrophilicity of the polyethers. Investigation of these hydrogel surfaces revealed subtle changes. The molecular surface properties indicate the significance of the effect of charge and molecular mobility of the groups expressed at the hydrogel surface.
Resumo:
Hydrogels may be described as cross~linked hydrophilic polymers that swell but do not dissolve in water. They have been utilised in many biomedical applications, as there is the potential to manipulate the properties for a given application by changing the chemical structure of the constituent monomers. This project is focused on the development of novel hydrogels for keratoprosthesis (KPro). The most commonly used KPro model consists of a tansparent central stem witb a porous peripheral skirt. Clear poly (methyl methacrylate) (PMMA) core material used in the Strampelli KPros prosthesis has not been the cause of failure found in other core and skirt prostheses. However, epithelialization of this kind of solid, rigid optic material is clearly impossible. The approach to the development of a hydrogeJ for potential KPro use adopted in this work is to develop soft core material to mimic the properties of the natural cornea by incorporating some hydrophilic monomers such as N, N-dimethyacrylamide (NNSMA) N~vinyl pyrrolidone (NVP) and acryloylmorpholine (AMO) with methyl methactylate (MMA). Most of these materials have been used in other ophthalmic applications, such as contact lens. However, an unavoidable limitation of simple .MMA copolymers as conventional hydrogels is poor mechanical strength. The hydrogel for use in this application must be able to withstand the stresses involved during the surgical procedure involved with KPro surgery and the in situ stresses such as the deforming force of the eyelid during the blink cycle. Thus, semi-interpenetrating polymer networks (SIPNs) based on ester polyurethane, AMO, NVP and NNDMA were examined in this work and were found to have much improved mechanical properties at water contents between 40% and 70%. Polyethylene glycol monomethacrylate (PEG MA) was successfully incorporated in order to modulate protein deposition and cell adhesion. Porous peripheral skirts were fabricated using different types of porosigen. The water content mechanical properties, surface properties and cell response of these various materials have been investigated in this thesis. These studies demonstrated that simple hydrogel SIPNs which show isotropic mechanical behaviour, are not ideal KPro materials since they do not mimic the anisotropic behaviour of natural cornea. The final stage of the work has concentrated on the study of hydrogels reinforced with mesh materials. They offer a promising approach to making a hydrogel that is very flexible but strong under tension, thereby having mechanical properties closer to the natural cornea than has been previously possible.
Resumo:
Common problems encountered in clinical sensing are those of non-biocompatibility, and slow response time of the device. The latter, also applying to chemical sensors, is possibly due to a lack of understanding of polymer support or membrane properties and hence failure to optimise membranes chosen for specific sensor applications. Hydrogels can be described as polymers which swell in water. In addition to this, the presence of water in the polymer matrix offers some control of biocompatibility. They thus provide a medium through which rapid transport of a sensed species to an incorporated reagent could occur. This work considers the feasibility of such a system, leading to the design and construction of an optical sensor test bed. The development of suitable membrane systems and of suitable coating techniques in order to apply them to the fibre optics is described. Initial results obtained from hydrogel coatings implied that the refractive index change in the polymer matrix, due to a change in water content with pH is the major factor contributing to the sensor response. However the presence of the colourimetric reagent was also altering the output signal obtained. An analysis of factors contributing to the overall response, such as colour change and membrane composition were made on both the test bed, via optical response, and on whole membranes via measurement of water content change. The investigation of coatings with low equilibrium water contents, of less than 10% was carried out and in fact a clearer signal response from the test bed was noted. Again these membranes were suprisingly responding via refractive index change, with the reagent playing a primary role in obtaining a sensible or non-random response, although not in a colourimetric fashion. A photographic study of these coatings revealed some clues as to the physical nature of these coatings and hence partially explained this phenomenon. A study of the transport properties of the most successful membrane, on a coated wire electrode and also on the fibre optic test bed, in a series of test environments, indicated that the reagent was possibly acting as an ion exchanger and hence having a major influence on transport and therefore sensor characteristics.
Resumo:
Hydrogels are a unique class of polymer which swell, but do not dissolve in, water. A range of 2-hydroxyethyl methacrylate based copolymer hydrogels containing both cyclic and linear polyethers have been synthesised and are described in this thesis. Initially, cyclic polyethers were occluded within the polymer matrix and the transport properties investigated. The results indicated that the presence of an ionophore can be used to modulate ion transport and that ion transport is described by a dual-sorption mechanism. However, these studies were limited due to ionophore loss during hydration. Hence, the synthesis of a range of acrylate based crown ether monomers was considered. A pure sample of 4-acryolylaminobenzo-15-crown-5 was obtained and a terpolymer containing this monomer was prepared. Transport studies illustrated that the presence of a `bound' ionophore modulates ion transport in a similar way to the occluded systems. The transport properties of a series of terpolymers containing linear polyethers were then investigated. The results indicated that the dual-sorption mechanism is observed for these systems with group II metal cations while the transport of group I metal cations, with the exception of sodium, is enhanced. Finally, the equilibrium water contents (EWC) surface and mechanical properties of these terpolymers containing linear polyethers were examined. Although subtle variations in EWC are observed as the structure of the polyether side chain varies, generally EWC is enhanced due to the hydrophilicity of the polyether side chain. The macroscopic surface properties were investigated using a sessile drop technique and FTIR spectroscopy. At a molecular level surface properties were probed using an in vitro ocular spoilation model and preliminary cell adhesion studies. The results indicate that the polyethylene oxide side chains are expressed at the polymer surface thus reducing the adhesion of biological species.
Resumo:
Hydrogels may be described as cross-linked hydrophilic polymers that swell but do not dissolve in water. The production of high water content hydrogels was the subject of investigation. Based upon copolymer compositions that had already achieved commercial success as biomaterials, new monomers were added or substituted in and the effects observed. The addition of N-isopropyl acrylamide to an acrylamide-based composition that had previously been designed to become a contact lens, produced materials that showed smart effects in that the water content showed dependence on the temperature of the hydrating solution. Such thermo-responsive materials have potential uses in drug delivery, ultrafiltration and cell culture surfaces. Proteoglycans in nature have an important role to play in structural support where a highly hydrophilic structure maintains lubricious surfaces. Certain functional groups that impart this hydrophilicity are present in certain sulphonate monomers, Bis(3-sulphopropyl ester) itaconate, dipotassium salt (SPI), 3-Sulphopropyl ester acrylate, potassium salt (SPA) and Sodium 2-(acrylamido)-2-methyl propane sulphonate (NaAMPS). These monomers were incorporated into a HEMA-based copolymer that had been designed initially as a contact lens and the resulting effects examined. Highly hydrophilic materials resulted that showed reduced protein deposition over the neutral core material. It is postulated that a sulphonate group would have a larger number of hydration shells around it than for example methacrylic acid, leading to more dynamic exchange and so reducing the adsorption of biological solutes. A cationic monomer was added to bring back the net anionic nature of the sulphonate hydrogels and the effects studied. Ionic interactions were found to cause a reduction in the water content of the resulting materials as the mobility of the network decreased, leading to stiffer but less extensible materials. The presence of a net dominant charge, whether negative or positive, appeared to act to reduce protein deposition, but increasing equivalence in the amount of both charges served to present a more 'neutral' surface and deposition subsequently increased. The grafting of hydrophilic hydrogel layers onto silicone elastomer was attempted and the results evaluated using dynamic contact angle measurements. Following plasma oxidation to reduce the surface energy barrier to aqueous grafting chemistry, it was found that the wettability of the modified elastomers could be significantly enhanced by such treatment. The SPA-grafted material in particular hinted at an osmotic drive for rehydration that may be exploited in biomaterials.
Resumo:
The Scintillation Proximity Assay (SPA) is a method that is frequently used to detect and quantify the strength of intermolecular interactions between a biological receptor and ligand molecule in aqueous media. This thesis describes the synthesis of scintillant-tagged-compounds for application in a novel cell-based SPA. A series of 4-functianlised-2,5-diphenyloxazole molecules were synthesised. These 4-functionalised-2,5-diphenyloxazoles were evaluated by Sense Proteomic Ltd. Accordingly, the molecules were evaluated for the ability to scintillate in the presence of ionising radiation. In addition, the molecules were incorporated into liposomal preparations which were subsequently evaluated for the ability to scintillate in the presence of ionising radiation. The optimal liposomal preparation was introduced into the membrane of HeLa cells that were used successfully in a cell-based SPA to detect and quantify the uptake of [14C]methionine. This thesis also describes the synthesis and subsequent polymerisation of novel poly(oxyethylene glycol)-based monomers to form a series of new polymer supports. These Poly(oxyethylene glycol)-polymer (POP) supports were evaluated for the ability to swell and mass-uptake in a variety of solvents, demonstrating that POP-supports exhibit enhanced solvent compatibilities over several commercial resins. The utility of POP-supports in solid-phase synthesis was also demonstrated successfully. The incorporation of (4’-vinyl)-4-benzyl-2,5-diphenyloxazole in varying mole percentage into the monomer composition resulted in the production of chemically functionalised scintillant-containing poly(oxyethylene glycol) polymer (POP-Sc) supports. These materials are compatible with both aqueous and organic solvents and scintillate efficiently in the presence of ionising radiation. The utility of POP-Sc supports in solid-phase synthesis and subsequent in-situ SPA to detect and quantify, in real-time, the kinetic progress of a solid-phase reaction was exemplified successfully.In addition, POP-Sc supports were used successfully both in solid-phase combinatorial synthesis of a peptide nucleic acid (PNA)-library and subsequent screening of this library for the ability to hybridise with DNA, which was labelled with a suitable radio-isotape. This data was used to identify the dependence of the number and position of complimentary codon pairs upon the extent of hybridisation. Finally, a further SPA was used to demonstrate the excellent compatibility of POP-Sc supports for use in the detection and quantification of enzyme assays conducted within the matrix of the POP-Sc support.
Resumo:
The subject of investigation of the present research is the use of smart hydrogels with fibre optic sensor technology. The aim was to develop a costeffective sensor platform for the detection of water in hydrocarbon media, and of dissolved inorganic analytes, namely potassium, calcium and aluminium. The fibre optic sensors in this work depend upon the use of hydrogels to either entrap chemotropic agents or to respond to external environmental changes, by changing their inherent properties, such as refractive index (RI). A review of current fibre optic technology for sensing outlined that the main principles utilised are either the measurement of signal loss or a change in wavelength of the light transmitted through the system. The signal loss principle relies on changing the conditions required for total internal reflection to occur. Hydrogels are cross-linked polymer networks that swell but do not dissolve in aqueous environments. Smart hydrogels are synthetic materials that exhibit additional properties to those inherent in their structure. In order to control the non-inherent properties, the hydrogels were fabricated with the addition of chemotropic agents. For the detection of water, hydrogels of low refractive index were synthesized using fluorinated monomers. Sulfonated monomers were used for their extreme hydrophilicity as a means of water sensing through an RI change. To enhance the sensing capability of the hydrogel, chemotropic agents, such as pH indicators and cobalt salts, were used. The system comprises of the smart hydrogel coated onto an exposed section of the fibre optic core, connected to the interrogation system measuring the difference in the signal. Information obtained was analysed using a purpose designed software. The developed sensor platform showed that an increase in the target species caused an increase in the signal lost from the sensor system, allowing for a detection of the target species. The system has potential applications in areas such as clinical point of care, water detection in fuels and the detection of dissolved ions in the water industry.