899 resultados para Extreme ultraviolet


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to characterise the rainfall exceptionality and the meteorological context of the 20 February 2010 flash-floods in Madeira (Portugal). Daily and hourly precipitation records from the available rain-gauge station networks are evaluated in order to reconstitute the temporal evolution of the rainstorm, as its geographic incidence, contributing to understand the flash-flood dynamics and the type and spatial distribution of the associated impacts. The exceptionality of the rainstorm is further confirmed by the return period associated with the daily precipitation registered at the two long-term record stations, with 146.9 mm observed in the city of Funchal and 333.8 mm on the mountain top, corresponding to an estimated return period of approximately 290 yr and 90 yr, respectively. Furthermore, the synoptic associated situation responsible for the flash-floods is analysed using different sources of information, e.g., weather charts, reanalysis data, Meteosat images and radiosounding data, with the focus on two main issues: (1) the dynamical conditions that promoted such anomalous humidity availability over the Madeira region on 20 February 2010 and (2) the uplift mechanism that induced deep convection activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of extreme cyclones is analysed in terms of their relationship to the NAO phase and the dominating environmental variables controlling their intensification. These are latent energy (equivalent potential temperature 850 hPa is used as an indicator), upper-air baroclinicity, horizontal divergence and jet stream strength. Cyclones over the North Atlantic are identified and tracked using a numerical algorithm, permitting a detailed analysis of their life cycles. Extreme cyclones are selected as the 10% most severe in terms of intensity. Investigations focus on the main strengthening phase of each cyclone. The environmental factors are related to the NAO, which affects the location and orientation of the cyclone tracks, thus explaining why extreme cyclones occur more (less) frequently during strong positive (negative) NAO phases. The enhanced number of extreme cyclones in positive NAO phases can be explained by the larger area with suitable growth conditions, which is better aligned with the cyclone tracks and is associated with increased cyclone life time and intensity. Moreover, strong intensification of cyclones is frequently linked to the occurrence of extreme values of growth factors in the immediate vicinity of the cyclone centre. Similar results are found for ECHAM5/OM1 for present day conditions, demonstrating that relationships between the environment factors and cyclones are also valid in the GCM. For future climate conditions (following the SRES A1B scenario), the results are similar, but a small increase of the frequency of extreme values is detected near the cyclone cores. On the other hand, total cyclone numbers decrease by 10% over the North Atlantic. An exception is the region near the British Isles, which features increased track density and intensity of extreme cyclones irrespective of the NAO phase. These changes are associated with an intensified jet stream close to Europe. Moreover, an enhanced frequency of explosive developments over the British Isles is found, leading to more frequent windstorms affecting Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boreal winter wind storm situations over Central Europe are investigated by means of an objective cluster analysis. Surface data from the NCEP-Reanalysis and ECHAM4/OPYC3-climate change GHG simulation (IS92a) are considered. To achieve an optimum separation of clusters of extreme storm conditions, 55 clusters of weather patterns are differentiated. To reduce the computational effort, a PCA is initially performed, leading to a data reduction of about 98 %. The clustering itself was computed on 3-day periods constructed with the first six PCs using "k-means" clustering algorithm. The applied method enables an evaluation of the time evolution of the synoptic developments. The climate change signal is constructed by a projection of the GCM simulation on the EOFs attained from the NCEP-Reanalysis. Consequently, the same clusters are obtained and frequency distributions can be compared. For Central Europe, four primary storm clusters are identified. These clusters feature almost 72 % of the historical extreme storms events and add only to 5 % of the total relative frequency. Moreover, they show a statistically significant signature in the associated wind fields over Europe. An increased frequency of Central European storm clusters is detected with enhanced GHG conditions, associated with an enhancement of the pressure gradient over Central Europe. Consequently, more intense wind events over Central Europe are expected. The presented algorithm will be highly valuable for the analysis of huge data amounts as is required for e.g. multi-model ensemble analysis, particularly because of the enormous data reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The summer monsoon season is an important hydrometeorological feature of the Indian subcontinent and it has significant socioeconomic impacts. This study is aimed at understanding the processes associated with the occurrence of catastrophic flood events. The study has two novel features that add to the existing body of knowledge about the South Asian Monsoon: 1) combine traditional hydrometeorological observations (rain gauge measurements) with unconventional data (media and state historical records of reported flooding) to produce value-added century-long time-series of potential flood events, and 2) identify the larger regional synoptic conditions leading to days with flood potential in the time-series. The promise of mining unconventional data to extend hydrometeorological records is demonstrated in this study. The synoptic evolution of flooding events in the western-central coast of India and the densely populated Mumbai area are shown to correspond to active monsoon periods with embedded low-pressure centers and have far upstream influence from the western edge of the Indian Ocean basin. The coastal processes along the Arabian Peninsula where the currents interact with the continental shelf are found to be key features of extremes during the South Asian Monsoon

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The European summer of 2012 was marked by strongly contrasting rainfall anomalies, which led to flooding in northern Europe and droughts and wildfires in southern Europe. This season was not an isolated event, rather the latest in a string of summers characterized by a southward shifted Atlantic storm track as described by the negative phase of the SNAO. The degree of decadal variability in these features suggests a role for forcing from outside the dynamical atmosphere, and preliminary numerical experiments suggest that the global SST and low Arctic sea ice extent anomalies are likely to have played a role and that warm North Atlantic SSTs were a particular contributing factor. The direct effects of changes in radiative forcing from greenhouse gas and aerosol forcing are not included in these experiments, but both anthropogenic forcing and natural variability may have influenced the SST and sea ice changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of 1973–2005 land use–land cover (LULC) changes on near-surface air temperatures during four recent summer extreme heat events (EHEs) are investigated for the arid Phoenix, Arizona, metropolitan area using the Weather Research and Forecasting Model (WRF) in conjunction with the Noah Urban Canopy Model. WRF simulations were carried out for each EHE using LULC for the years 1973, 1985, 1998, and 2005. Comparison of measured near-surface air temperatures and wind speeds for 18 surface stations in the region show a good agreement between observed and simulated data for all simulation periods. The results indicate consistent significant contributions of urban development and accompanying LULC changes to extreme temperatures for the four EHEs. Simulations suggest new urban developments caused an intensification and expansion of the area experiencing extreme temperatures but mainly influenced nighttime temperatures with an increase of up to 10 K. Nighttime temperatures in the existing urban core showed changes of up to 2 K with the ongoing LULC changes. Daytime temperatures were not significantly affected where urban development replaced desert land (increase by 1 K); however, maximum temperatures increased by 2–4 K when irrigated agricultural land was converted to suburban development. According to the model simulations, urban landscaping irrigation contributed to cooling by 0.5–1 K in maximum daytime as well as minimum nighttime 2-m air temperatures in most parts of the urban region. Furthermore, urban development led to a reduction of the already relatively weak nighttime winds and therefore a reduction in advection of cooler air into the city.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What determines the emergence and survival of democracy? The authors apply extreme bounds analysis to test the robustness of fifty-nine factors proposed in the literature, evaluating over three million regressions with data from 165 countries from 1976 to 2002. The most robust determinants of the transition to democracy are gross domestic product (GDP) growth (a negative effect), past transitions (a positive effect), and Organisation for Economic Co-operation and Development membership (a positive effect). There is some evidence that fuel exporters and Muslim countries are less likely to see democracy emerge, although the latter finding is driven entirely by oil-producing Muslim countries. Regarding the survival of democracy, the most robust determinants are GDP per capita (a positive effect) and past transitions (a negative effect). There is some evidence that having a former military leader as the chief executive has a negative effect, while having other democracies as neighbors has a reinforcing effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leading patterns of observed monthly extreme rainfall variability in Australia are examined using an Empirical Orthogonal Teleconnection (EOT) method. Extreme rainfall variability is more closely related to mean rainfall variability during austral summer than in winter. The leading EOT patterns of extreme rainfall explain less variance in Australia-wide extreme rainfall than is the case for mean rainfall EOTs. We illustrate that, as with mean rainfall, the El Niño-Southern Oscillation (ENSO) has the strongest association with warm-season extreme rainfall variability, while in the cool-season the primary drivers are atmospheric blocking and the subtropical ridge. The Indian Ocean Dipole and Southern Annular Mode also have significant relationships with patterns of variability during austral winter and spring. Leading patterns of summer extreme rainfall variability have predictability several months ahead from Pacific sea surface temperatures (SSTs) and as much as a year in advance from Indian Ocean SSTs. Predictability from the Pacific is greater for wetter than average summer months than for months that are drier than average, whereas for the Indian Ocean the relationship has greater linearity. Several cool-season EOTs are associated with mid-latitude synoptic-scale patterns along the south and east coasts. These patterns have common atmospheric signatures denoting moist onshore flow and strong cyclonic anomalies often to the north of a blocking anti-cyclone. Tropical cyclone activity is observed to have significant relationships with some warm season EOTs. This analysis shows that extreme rainfall variability in Australia can be related to remote drivers and local synoptic-scale patterns throughout the year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamical downscaling is frequently used to investigate the dynamical variables of extra-tropical cyclones, for example, precipitation, using very high-resolution models nested within coarser resolution models to understand the processes that lead to intense precipitation. It is also used in climate change studies, using long timeseries to investigate trends in precipitation, or to look at the small-scale dynamical processes for specific case studies. This study investigates some of the problems associated with dynamical downscaling and looks at the optimum configuration to obtain the distribution and intensity of a precipitation field to match observations. This study uses the Met Office Unified Model run in limited area mode with grid spacings of 12, 4 and 1.5 km, driven by boundary conditions provided by the ECMWF Operational Analysis to produce high-resolution simulations for the Summer of 2007 UK flooding events. The numerical weather prediction model is initiated at varying times before the peak precipitation is observed to test the importance of the initialisation and boundary conditions, and how long the simulation can be run for. The results are compared to raingauge data as verification and show that the model intensities are most similar to observations when the model is initialised 12 hours before the peak precipitation is observed. It was also shown that using non-gridded datasets makes verification more difficult, with the density of observations also affecting the intensities observed. It is concluded that the simulations are able to produce realistic precipitation intensities when driven by the coarser resolution data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of the HiGEM climate model to represent high-impact, regional, precipitation events is investigated in two ways. The first focusses on a case study of extreme regional accumulation of precipitation during the passage of a summer extra-tropical cyclone across southern England on 20 July 2007 that resulted in a national flooding emergency. The climate model is compared with a global Numerical Weather Prediction (NWP) model and higher resolution, nested limited area models. While the climate model does not simulate the timing and location of the cyclone and associated precipitation as accurately as the NWP simulations, the total accumulated precipitation in all models is similar to the rain gauge estimate across England and Wales. The regional accumulation over the event is insensitive to horizontal resolution for grid spacings ranging from 90km to 4km. Secondly, the free-running climate model reproduces the statistical distribution of daily precipitation accumulations observed in the England-Wales precipitation record. The model distribution diverges increasingly from the record for longer accumulation periods with a consistent under-representation of more intense multi-day accumulations. This may indicate a lack of low-frequency variability associated with weather regime persistence. Despite this, the overall seasonal and annual precipitation totals from the model are still comparable to those from ERA-Interim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extreme temperature during reproductive development affects rice (Oryza sativa L.) yield and seed quality. A controlled-environment reciprocal-transfer experiment was designed where plants from two japonica cultivars were grown at 28/24 ⁰C and moved to 18/14 ⁰C and vice versa, or from 28/24 to 38/34 ⁰C and vice versa, for 7-d periods to determine the respective temporal pattern of sensitivity of spikelet fertility, yield, and seed viability to each temperature extreme. Spikelet fertility and seed yield per panicle were severely reduced by extreme temperature in the 14 d period prior to anthesis; and both cultivars were affected at 38/34 ⁰C while only cv. Gleva was affected at 18/14 ºC. The damage was greater the earlier the panicles were stressed within this period. Later-exserted panicles compensated only partly for yield loss. Seed viability was significantly reduced by 7-d exposure to 38/34 ⁰C or 18/14 ⁰C at 1 to 7 and 1 to 14 d after anthesis, respectively, in cv. Gleva. Cultivar Taipei 309 was not affected by 7 d exposure at 18/14 ⁰C; and no consistent temporal pattern of sensitivity was evident at 38/34 ⁰C. Hence, brief exposure to low or high temperature was most damaging to spikelet fertility and yield 14 to 7 d before anthesis, coinciding with microsporogenesis; and it was almost as damaging around anthesis. Seed viability was most vulnerable to low or high temperature in the 7 or 14 d after anthesis, when histodifferentiation occurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Symbiotic relationships have contributed to major evolutionary innovations, the maintenance of fundamental ecosystem functions, and the generation and maintenance of biodiversity. However, the exact nature of host/symbiont associations, which has important consequences for their dynamics, is often poorly known due to limited understanding of symbiont taxonomy and species diversity. Among classical symbioses, figs and their pollinating wasps constitute a highly diverse keystone resource in tropical forest and savannah environments. Historically, they were considered to exemplify extreme reciprocal partner specificity (one-to-one host-symbiont species relationships), but recent work has revealed several more complex cases. However, there is a striking lack of studies with the specific aims of assessing symbiont diversity and how this varies across the geographic range of the host. Results: Here, we use molecular methods to investigate cryptic diversity in the pollinating wasps of a widespread Australian fig species. Standard barcoding genes and methods were not conclusive, but incorporation of phylogenetic analyses and a recently developed nuclear barcoding gene (ITS2), gave strong support for five pollinator species. Each pollinator species was most common in a different geographic region, emphasising the importance of wide geographic sampling to uncover diversity, and the scope for divergence in coevolutionary trajectories across the host plant range. In addition, most regions had multiple coexisting pollinators, raising the question of how they coexist in apparently similar or identical resource niches. Conclusion: Our study offers a striking example of extreme deviation from reciprocal partner specificity over the full geographical range of a fig-wasp system. It also suggests that superficially identical species may be able to co-exist in a mutualistic setting albeit at different frequencies in relation to their fig host’s range. We show that comprehensive sampling and molecular taxonomic techniques may be required to uncover the true structure of cryptic biodiversity underpinning intimate ecological interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new generation of reanalysis products is currently being produced that provides global gridded atmospheric data spanning more than a century. Such data may be useful for characterising the observed long-term variability of extreme precipitation events, particularly in regions where spatial coverage of surface observations is limited, and in the pre-satellite era. An analysis of extreme precipitation events is performed over England and Wales, investigating the ability of Twentieth Century Reanalysis and ERA-Interim to represent extreme precipitation accumulations as recorded in the England and Wales Precipitation dataset on accumulation time-scales from 1 to 7 days. Significant correlations are found between daily precipitation accumulation observations and both reanalysis products. A hit-rate analysis indicates that the reanalyses have hit rates (as defined by an event above the 98th percentile) of approximately 40–65% for extreme events in both summer (JJA) and winter (DJF). This suggests that both ERA-Interim and Twentieth Century Reanalysis are difficult to use for representing individual extreme precipitation events over England and Wales.