876 resultados para Extreme phenotypes
Resumo:
Questions Do extreme dry spells in late summer or in spring affect abundance and species composition of the reproductive shoots and the seed rain in the next annual crop? Are drought effects on reproductive shoots related to the rooting depths of species? Location Species-rich semi-natural grassland at Negrentino, Switzerland. Methods In plots under automated rain-out shelters, rainwater was added to simulate normal conditions and compare them with two experimentally effected long dry spells, in late summer (2004) and in the following spring (2005). For 28 plots, numbers of reproductive shoots per species were counted in 1-m2 areas and seed rain was estimated using nine sticky traps of 102 cm2 after dry spells. Results The two extreme dry spells in late summer and spring were similar in length and their probability of recurrence. They independently reduced the subsequent reproductive output of the community, while their seasonal timing modified its species composition. Compared to drought in spring, drought in late summer reduced soil moisture more and reduced the number of reproductive shoots of more species. The negative effects of summer drought decreased with species’ rooting depth. The shallow-rooted graminoids showed a consistent susceptibility to summer drought, while legumes and other forbs showed more varied responses to both droughts. Spring drought strongly reduced density (–53%) and species richness (–43%) of the community seed rain, while summer drought had only a marginally significant impact on seed density of graminoids (–44%). Reductions in seed number per shoot vs reproductive shoot density distinguished the impacts of drought with respect to its seasonal timing. Conclusion The essentially negative impact of drought in different seasons on reproductive output suggests that more frequent dry spells could contribute to local plant diversity loss by aggravating seed deficiency in species-rich grassland.
Resumo:
Land and water management in semi-arid regions requires detailed information on precipitation distribution, including extremes, and changes therein. Such information is often lacking. This paper describes statistics of mean and extreme precipitation in a unique data set from the Mount Kenya region, encompassing around 50 stations with at least 30 years of data. We describe the data set, including quality control procedures and statistical break detection. Trends in mean precipitation and extreme indices calculated from these data for individual rainy seasons are compared with corresponding trends in reanalysis products. From 1979 to 2011, mean precipitation decreased at 75% of the stations during the ‘long rains’ (March to May) and increased at 70% of the stations during the ‘short rains’ (October to December). Corresponding trends are found in the number of heavy precipitation days, and maximum of consecutive 5-day precipitation. Conversely, an increase in consecutive dry days within both main rainy seasons is found. However, trends are only statistically significant in very few cases. Reanalysis data sets agree with observations with respect to interannual variability, while correlations are considerably lower for monthly deviations (ratios) from the mean annual cycle. While some products well reproduce the rainfall climatology and some the spatial trend pattern, no product reproduces both.
Resumo:
In the current model for bacterial cell division, the FtsZ protein forms a ring that marks the division plane, creating a cytoskeletal framework for the subsequent action of other essential division proteins such as FtsA and ZipA. The putative protein complex ultimately generates the division septum. The essential cell division protein FtsZ is a functional and structural homolog of eukaryotic tubulin, and like tubulin, FtsZ hydrolyzes GTP and self-assembles into protein filaments in a strictly GTP-dependent manner. FtsA shares sequence similarity with members of the ATPase superfamily that include actin, but its actual function remains unknown. To test the division model and elucidate functions of the division proteins, this dissertation primarily focuses on the analysis of FtsZ and FtsA in Escherichia coli. ^ By tagging with green fluorescent protein, we first demonstrated that FtsA also exhibits a ring-like structure at the potential division site. The localization of FtsA was dependent on functional FtsZ, suggesting that FtsA is recruited to the septum by the FtsZ ring. In support of this idea, we showed that FtsA and FtsZ directly interact. Using a novel E. coli in situ assay, we found that the FtsA-FtsZ interaction appears to be species-specific, although an interspecies interaction could occur between FtsA and FtsZ proteins from two closely related organisms. In addition, mutagenesis of FtsA revealed that no single domain is solely responsible for its septal localization or interaction with FtsZ. To explore the function of FtsA, we purified FtsA protein and demonstrated that it has ATPase activity. Furthermore, purified FtsA stimulates disassembly of FtsZ polymers in a sedimentation assay but does not affect GTP hydrolysis of FtsZ. This result suggests that in the cell, FtsA may function similarly in regulating dynamic instability of the FtsZ ring during the cell division process. ^ To elucidate the structure-function relationship of FtsZ, we carried out thorough genetic and functional analyses of the mutagenized FtsZ derivatives. Our results indicate that the conserved N-terminal domain of FtsZ is necessary and sufficient for FtsZ self-assembly and localization. Moreover, we discovered a critical role for an extreme C-terminal domain of FtsZ that consists of only 12 residues. Truncated FtsZ derivatives lacking this domain, though able to polymerize and localize, are defective in ring formation in vivo as well as interaction with FtsA and ZipA. Alanine scanning mutagenesis of this region pinpointed at least five residues necessary for the function of FtsZ. Studies of protein levels and protein-protein interactions suggested that these residues may be involved in regulating protein stability and/or FtsZ-FtsA interactions. Interestingly, two of the point mutants exhibited dominant-negative phenotypes. ^ In summary, results from this thesis work have provided additional support for the division machinery model and will contribute to a better understanding of the coordinate functions of FtsA and FtsZ in the cell division process. ^
Resumo:
Obesity is a complex multifactorial disease and is a public health priority. Perilipin coats the surface of lipid droplets in adipocytes and is believed to stabilize these lipid bodies by protecting triglyceride from early lipolysis. This research project evaluated the association between genetic variation within the human perilipin (PLIN) gene and obesity-related quantitative traits and disease-related phenotypes in Non-Hispanic White (NHW) and African American (AA) participants from the Atherosclerosis Risk in Communities (ARIC) Study. ^ Multivariate linear regression, multivariate logistic regression, and Cox proportional hazards models evaluated the association between single gene variants (rs2304794, rs894160, rs8179071, and rs2304795) and multilocus variation (rs894160 and rs2304795) within the PLIN gene and both obesity-related quantitative traits (body weight, body mass index [BMI], waist girth, waist-to-hip ratio [WHR], estimated percent body fat, and plasma total triglycerides) and disease-related phenotypes (prevalent obesity, metabolic syndrome [MetS], prevalent coronary heart disease [CHD], and incident CHD). Single variant analyses were stratified by race and gender within race while multilocus analyses were stratified by race. ^ Single variant analyses revealed that rs2304794 and rs894160 were significantly related to plasma triglyceride levels in all NHWs and NHW women. Among AA women, variant rs8179071 was associated with triglyceride levels and rs2304794 was associated with risk-raising waist circumference (>0.8 in women). The multilocus effects of variants rs894160 and rs2304795 were significantly associated with body weight, waist girth, WHR, estimated percent body fat, class II obesity (BMI ≥ 35 kg/m2), class III obesity (BMI ≥ 35 kg/m2), and risk-raising WHR (>0.9 in men and >0.8 in women) in AAs. Variant rs2304795 was significantly related to prevalent MetS among AA males and prevalent CHD in NHW women; multilocus effects of the PLIN gene were associated with prevalent CHD among NHWs. Rs2304794 was associated with incident CHD in the absence of the MetS among AAs. These findings support the hypothesis that variation within the PLIN gene influences obesity-related traits and disease-related phenotypes. ^ Understanding these effects of the PLIN genotype on the development of obesity can potentially lead to tailored health promotion interventions that are more effective. ^
Resumo:
Floods are the leading cause of fatalities related to natural disasters in Texas. Texas leads the nation in flash flood fatalities. From 1959 through 2009 there were three times more fatalities in Texas (840) than the following state Pennsylvania (265). Texas also leads the nation in flood-related injuries (7753). Flood fatalities in Texas represent a serious public health problem. This study addresses several objectives of Healthy People 2010 including reducing deaths from motor vehicle accidents (Objective 15-15), reducing nonfatal motor vehicle injuries (Objective 15-17), and reducing drownings (Objective 15-29). The study examined flood fatalities that occurred in Texas between 1959 and 2008. Flood fatality statistics were extracted from three sources: flood fatality databases from the National Climatic Data Center, the Spatial Hazard Event and Loss Database for the United States, and the Texas Department of State Health Services. The data collected for flood fatalities include the date, time, gender, age, location, and type of flood. Inconsistencies among the three databases were identified and discussed. Analysis reveals that most fatalities result from driving into flood water (77%). Spatial analysis indicates that more fatalities occurred in counties containing major urban centers – some of the Flash Flood Alley counties (Bexar, Dallas, Travis, and Tarrant), Harris County (Houston), and Val Verde County (Del Rio). An intervention strategy targeting the behavior of driving into flood water is proposed. The intervention is based on the Health Belief model. The main recommendation of the study is that flood fatalities in Texas can be reduced through a combination of improved hydrometeorological forecasting, educational programs aimed at enhancing the public awareness of flood risk and the seriousness of flood warnings, and timely and appropriate action by local emergency and safety authorities.^
Resumo:
The stomachs of most vertebrates operate at an acidic pH of 2 generated by the gastric H+/K+-ATPase located in parietal cells. The acidic pH in stomachs of vertebrates is believed to aid digestion and to protect against environmental pathogens. Little attention has been placed on whether acidic gastric pH regulation is a vertebrate character or a deuterostome ancestral trait. Here, we report alkaline conditions up to pH 10.5 in the larval digestive systems of ambulacraria (echinoderm + hemichordate), the closest relative of the chordate. Microelectrode measurements in combination with specific inhibitors for acid-base transporters and ion pumps demonstrated that the gastric alkalization machinery in sea urchin larvae is mainly based on direct H+ secretion from the stomach lumen and involves a conserved set of ion pumps and transporters. Hemichordate larvae additionally utilized HCO3- transport pathways to generate even more alkaline digestive conditions. Molecular analyses in combination with acidification experiments supported these findings and identified genes coding for ion pumps energizing gastric alkalization. Given that insect larval guts were also reported to be alkaline, our discovery raises the hypothesis that the bilaterian ancestor utilized alkaline digestive system while the vertebrate lineage has evolved a strategy to strongly acidify their stomachs.
Resumo:
We report on the fabrication of aluminum gallium nitride (AlGaN) Schottky diodes for extreme ultraviolet (EUV) detection. AlGaN layers were grown on silicon wafers by molecular beam epitaxy with the conventional and inverted Schottky structure, where the undoped, active layer was grown before or after the n-doped layer, respectively. Different current mechanisms were observed in the two structures. The inverted Schottky diode was designed for the optimized backside sensitivity in the hybrid imagers. A cut-off wavelength of 280 nm was observed with three orders of magnitude intrinsic rejection ratio of the visible radiation. Furthermore, the inverted structure was characterized using a EUV source based on helium discharge and an open electrode design was used to improve the sensitivity. The characteristic He I and He II emission lines were observed at the wavelengths of 58.4 nm and 30.4 nm, respectively, proving the feasibility of using the inverted layer stack for EUV detection
Resumo:
The purpose of this paper is to provide information on the behaviour of steel prestressing wires under likely conditions that could be expected during a fire or impact loads. Four loadings were investigated: a) the influence of strain rate – from 10–3 to 600 s–1 – at room temperature, b) the influence of temperature – from 24 to 600 °C – at low strain rate, c) the influence of the joint effect of strain rate and temperature, and d) damage after three plausible fire scenarios. At room temperature it was found that using “static” values is a safe option. At high temperatures our results are in agreement with design codes. Regarding the joint effect of temperature and strain rate, mechanical properties decrease with increasing temperature, although for a given temperature, yield stress and tensile strength increase with strain rate. The data provided can be used profitably to model the mechanical behaviour of steel wires under different scenarios.
Resumo:
Extreme weather and climate events have received increased attention in the last few years, due to the often large loss of agriculture business and exponentially increasing costs associated with them and insurance planning. This increased attention raises the question as to whether extreme weather and climate events are truly increasing, whether this is only a perceived increase exacerbated by enhanced media coverage, or both. There are a number of ways extreme climate events can be defined, such as extreme daily temperatures, extreme daily rainfall amounts, and large areas experiencing unusually warm monthly temperatures, among others. In this study, we will focus our attention in frost and heatstroke events measuring it as the number of days under 0 ºC and number of days with daily maximum over 30ºC monthly respectively. We have studied the trends in these extreme events applying a Fast Fourier Transform to the series to clarify the tendency. Lack of long-term climate data suitable for analysis of extremes is the single biggest obstacle to quantifying whether extreme events have changed over the twentieth century, including high temporal and spatial resolution observations of temperatures. However, several series have been grouped in different ways: chosen the longest series independently, by provinces, by main watersheds and altitude. On the other hand, synthetic series generated by Luna and Balairón (AEMet) were also analyzed. The results obtained by different pooling data are discussed concluding the difficulties to assess the extreme events tendencies and high regional variation in the trends.
Resumo:
This study characterises the abatement effect of large dams with fixed-crest spillways under extreme design flood conditions. In contrast to previous studies using specific hydrographs for flow into the reservoir and simplifications to obtain analytical solutions, an automated tool was designed for calculations based on a Monte Carlo simulation environment, which integrates models that represent the different physical processes in watersheds with areas of 150?2000 km2. The tool was applied to 21 sites that were uniformly distributed throughout continental Spain, with 105 fixed-crest dam configurations. This tool allowed a set of hydrographs to be obtained as an approximation for the hydrological forcing of a dam and the characterisation of the response of the dam to this forcing. For all cases studied, we obtained a strong linear correlation between the peak flow entering the reservoir and the peak flow discharged by the dam, and a simple general procedure was proposed to characterise the peak-flow attenuation behaviour of the reservoir. Additionally, two dimensionless coefficients were defined to relate the variables governing both the generation of the flood and its abatement in the reservoir. Using these coefficients, a model was defined to allow for the estimation of the flood abatement effect of a reservoir based on the available information. This model should be useful in the hydrological design of spillways and the evaluation of the hydrological safety of dams. Finally, the proposed procedure and model were evaluated and representative applications were presented