601 resultados para Erythroid reconstitution


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reconstitutable apoprotein of Crotalus adamanteus L-amino acid oxidase was prepared using hydrophobic interaction chromatography. After reconstitution with flavin adenine dinucleotide, the resulting protein was inactive, with a perturbed conformation of the flavin binding site. Subsequently, a series of cosolvent-dependent compact intermediates was identified. The nearly complete activation of the reconstituted apoprotein and the restoration of its native flavin binding site was achieved in the presence of 50% glycerol. We provide evidence that in addition to a merely stabilizing effect of glycerol on native proteins, glycerol can also have a restorative effect on their compact equilibrium intermediates, and we suggest the hydrophobic effect as a dominating force in this in vitro-assisted restorative process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The developmental changes in hemoglobin gene expression known as "switching" involve both the sequential activation and silencing of the individual globin genes. We postulated that in addition to changes in transcription, posttranscriptional mechanisms may be involved in modulating globin gene expression. We studied globin RNA transcripts in human adult erythroid cells (hAEC to analyze the mechanism of silencing of the embryonic epsilon-globin gene in the adult stage and in K562 erythroleukemic cells to analyze the inactive state of their adult beta-globin genes. In hAEC, which express primarily the beta-globin gene, quantitative PCR analysis shows that beta-mRNA exon levels are high and comparable among the three exons; the RNA transcripts corresponding to exons of the gamma-globin gene are low, with slight differences among the three exons. Although epsilon-globin is not expressed, epsilon-globin RNA transcripts are detected, with exon I levels comparable to that of gamma-globin exon I and much higher than epsilon-exons II and III. As expected, in K562 cells that express high levels of epsilon- and gamma-globin, epsilon- and gamma-mRNA levels are high, with comparable levels of exons I, II, and III. In K562 cells beta-mRNA levels are very low but beta-exon I levels are much higher than that of exons II or III. Moreover, all or most of the globin transcripts for the highly expressed globin genes in both cell types (gamma and beta in hAEC, epsilon and gamma in K562 cells) found in the cytoplasm or nucleus are correctly processed. The globin transcripts that are detected both in the cytoplasm and nucleus of cells without expression of the corresponding protein are largely unspliced (containing one or two intervening sequences). These studies suggest that in addition to changes in transcription rates, changes in completion or processing of globin RNA transcripts may contribute to the developmental regulation of the hemoglobin phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pluripotent hematopoietic stem cells (PHSCs) show self-renewal and give rise to all blood cell types. The extremely low number of these cells in primary hematopoietic organs and the lack of culture systems that support proliferation of undifferentiated PHSCs have precluded the study of both the biology of these cells and their clinical application. We describe here cell lines and clones derived from PHSCs that were established from hematopoietic cells from the fetal liver or bone marrow of normal and p53-deficient mice with a combination of four growth factors. Most cell lines were Sca-1+, c-Kit+, PgP-1+, HSA+, and Lin- (B-220-, Joro 75-, 8C5-, F4/80-, CD4-, CD8-, CD3-, IgM-, and TER 119-negative) and expressed three new surface markers: Joro 177, Joro 184, and Joro 96. They did not synthesize RNA transcripts for several genes expressed at early stages of lymphocyte and myeloid/erythroid cell development. The clones were able to generate lymphoid, myeloid, and erythroid hematopoietic cells and to reconstitute the hematopoietic system of irradiated mice for a long time. The availability of lymphohematopoietic stem cell lines should facilitate the analysis of the molecular mechanisms that control self-renewal and differentiation and the development of efficient protocols for somatic gene therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the fission yeast, Schizosaccharomyces pombe, tolerance to high sodium and lithium concentrations requires the functioning of the sod2, Na+/H+ antiporter. We have directly measured the activity of this antiporter and demonstrated reconstitution of the activity in gene deletion strains. In addition, we have shown that it can be transferred to, and its antiporter activity detected in, the budding yeast, Saccharomyces cerevisiae, where it also confers sodium and lithium tolerance. Proton flux through the S. pombe Na+/H+ antiporter was directly measured using microphysiometry. The direction of transmembrane proton flux mediated by this antiporter was reversible, with protons being imported or exported in response to the external concentration of sodium. This bidirectional activity was also detected in S. cerevisiae strains expressing sod2 and expression of this gene complemented the sodium and lithium sensitivity resulting from inactivation of the ENA1/PMR2 encoded Na+-exporting ATPases. This suggests that antiporters or sodium pumps can be utilized interchangeably by S. cerevisiae to regulate internal sodium concentration. Potent inhibitors of mammalian Na+/H+ exchangers were found to have no effect on sod2 activity. The proton flux mediated by sod2 was also found to be unaffected by perturbation of membrane potential or the plasma membrane proton gradient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CBFA2 (AML1) gene encodes a DNA-binding subunit of the heterodimeric core-binding factor. The CBFA2 gene is disrupted by the (8;21), (3;21), and (12;21) chromosomal translocations associated with leukemias and myelodysplasias in humans. Mice lacking a CBF alpha 2 protein capable of binding DNA die between embryonic days 11.5 and 12.5 due to hemorrhaging in the central nervous system (CNS), at the nerve/CNS interfaces of cranial and spinal nerves, and in somitic/intersomitic regions along the presumptive spinal cord. Hemorrhaging is preceded by symmetric, bilateral necrosis in these regions. Definitive erythropoiesis and myelopoiesis do not occur in Cbfa2-deficient embryos, and disruption of one copy of the Cbfa2 gene significantly reduces the number of progenitors for erythroid and myeloid cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BEN/SC1/DM-GRASP is a membrane glycoprotein of the immunoglobulin superfamily isolated in the chick by several groups, including ours. Its expression is strictly developmentally regulated in several cell types of the nervous and hemopoietic systems and in certain epithelia. Each of these cell types expresses isoforms of BEN which differ by their level of N-glycosylation and by the presence or absence of the HNK-1 carbohydrate epitope. In the present work, the influence of glycosylation on BEN homophilic binding properties was investigated by two in vitro assays. First, each BEN isoform was covalently coupled to microspheres carrying different fluorescent dyes and an aggregation test was performed. We found that homophilic aggregates form indifferently between the same or different BEN isoforms, showing that glycosylation does not affect BEN homophilic binding properties. This was confirmed in the second test, where the BEN-coated microspheres bound to the neurites of BEN- expressing neurons, irrespective of the isoform considered. The transient expression of the BEN antigen on hemopoietic progenitors prompted us to see whether it might play a role in their proliferation and differentiation. When added to hemopoietic progenitor cells in an in vitro colony formation assay anti-BEN immunoglobulin strongly inhibited myeloid, but not erythroid, colony formation although both types of precursors express the molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the kinetics of the oxygen reaction of the fully reduced quinol oxidase, cytochrome bo3, using flow-flash and stopped flow techniques. This enzyme belongs to the heme-copper oxidase family but lacks the CuA center of the cytochrome c oxidases. Depending on the isolation procedure, the kinetics are found to be either nearly monophasic and very different from those of cytochrome c oxidase or multiphasic and quite similar to cytochrome c oxidase. The multiphasic kinetics in cytochrome c oxidase can largely be attributed to the presence Of CuA as the donor of a fourth electron, which rereduces the originally oxidized low-spin heme and completes the reduction of O2 to water. Monophasic kinetics would thus be expected, a priori, for cytochrome bo3 since it lacks the CuA center, and in this case we show that the oxygen reaction is incomplete and ends with the ferryl intermediate. Multiphasic kinetics thus suggest the presence of an extra electron donor (analogous to CuA). We observe such kinetics exclusively with cytochrome bo3 that contains a single equivalent of bound ubiquinone-8, whereas we find no bound ubiquinone in an enzyme exhibiting monophasic kinetics. Reconstitution with ubiquinone-8 converts the reaction kinetics from monophasic to multiphasic. We conclude that a single bound ubiquinone molecule in cytochrome bo3 is capable of fast rereduction of heme b and that the reaction with O2 is quite similar in quinol and cytochrome c oxidases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previously, we elucidated the role of bone morphogenetic protein 4 (BMP-4) in the dorsal-ventral patterning of the Xenopus embryo by using a dominant negative mutant of the BMP-4 receptor (DN-BR). The present paper describes the involvement of Ras, Raf, and activator protein 1 (AP-1) in BMP-4 signaling during Xenopus embryonic development. The AP-1 activity was determined by injecting an AP-1-dependent luciferase reporter gene into two-cell-stage Xenopus embryos and measuring the luciferase activity at various developmental stages. We found that injection of BMP-4 mRNA increased AP-1 activity, whereas injection of DN-BR mRNA inhibited AP-1 activity. Similar inhibitory effects were seen with injection of mRNAs encoding dominant negative mutants of c-Ha-Ras, c-Raf, or c-Jun. These results suggest that the endogenous AP-1 activity is regulated by BMP-4/Ras/Raf/Jun signals. We next investigated the effects of Ras/Raf/AP-1 signals on the biological functions of BMP-4. DN-BR-induced dorsalization of the embryo, revealed by the formation of a secondary body axis or dorsalization of the ventral mesoderm explant analyzed by histological and molecular criteria, was significantly reversed by coinjection of [Val12]Ha-Ras, c-Raf, or c-Jun mRNA. Furthermore, the BMP-4-stimulated erythroid differentiation in the ventral mesoderm was substantially inhibited by coinjection with the dominant negative c-Ha-Ras, c-Raf, or c-Jun mutant. Our results suggest the involvement of Ras/Raf/AP-1 in the BMP-4 signaling pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All animal DNA viruses except pox virus utilize the cell nucleus as the site for virus reproduction. Yet, a critical viral infection process, nuclear targeting of the viral genome, is poorly understood. The role of capsid proteins in nuclear targeting of simian virus 40 (SV40) DNA, which is assessed by the nuclear accumulation of large tumor (T) antigen, the initial sign of the infectious process, was tested by two independent approaches: antibody interception experiments and reconstitution experiments. When antibody against viral capsid protein Vp1 or Vp3 was introduced into the cytoplasm, the nuclear accumulation of T antigen was not observed in cells either infected or cytoplasmically injected with virion. Nuclearly introduced anti-Vp3 IgG also showed the inhibitory effect. In the reconstitution experiments, SV40 DNA was allowed to interact with protein components of the virus, either empty particles or histones, and the resulting complexes were tested for the capability of protein components to target the DNA to the nucleus from cytoplasm as effectively as the targeting of DNA in the mature virion. In cells injected with empty particle-DNA, but not in minichromosome-injected cells, T antigen was observed as effectively as in SV40-injected cells. These results demonstrate that SV40 capsid proteins can facilitate transport of SV40 DNA into the nucleus and indicate that Vp3, one of the capsid proteins, accompanies SV40 DNA as it enters the nucleus during virus infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chloroethylnitrosourea (CNU) alkylating agents are commonly used for cancer chemotherapy, but their usefulness is limited by severe bone marrow toxicity that causes the cumulative depletion of all hematopoietic lineages (pancytopenia). Bone marrow CNU sensitivity is probably due to the inefficient repair of CNU-induced DNA damage; relative to other tissues, bone marrow cells express extremely low levels of the O6-methylguanine DNA methyltransferase (MGMT) protein that repairs cytotoxic O6-chloroethylguanine DNA lesions. Using a simplified recombinant retroviral vector expressing the human MGMT gene under control of the phosphoglycerate kinase promoter (PGK-MGMT) we increased the capacity of murine bone marrow-derived cells to repair CNU-induced DNA damage. Stable reconstitution of mouse bone marrow with genetically modified, MGMT-expressing hematopoietic stem cells conferred considerable resistance to the cytotoxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a CNU commonly used for chemotherapy. Bone marrow harvested from mice transplanted with PGK-MGMT-transduced cells showed extensive in vitro BCNU resistance. Moreover, MGMT expression in mouse bone marrow conferred in vivo resistance to BCNU-induced pancytopenia and significantly reduced BCNU-induced mortality due to bone marrow hypoplasia. These data demonstrate that increased DNA alkylation repair in primitive hematopoietic stem cells confers multilineage protection from the myelosuppressive effects of BCNU and suggest a possible approach to protecting cancer patients from CNU chemotherapy-related toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

gp130 is a ubiquitously expressed signal-transducing receptor component shared by interleukin 6, interleukin 11, leukemia inhibitory factor, oncostatin M, ciliary neurotrophic factor, and cardiotrophin 1. To investigate physiological roles of gp130 and to examine pathological consequences of a lack of gp130, mice deficient for gp130 have been prepared. Embryos homozygous for the gp130 mutation progressively die between 12.5 days postcoitum and term. On 16.5 days postcoitum and later, they show hypoplastic ventricular myocardium without septal and trabecular defect. The subcellular ultrastructures in gp130-/- cardiomyocytes appear normal. The mutant embryos have greatly reduced numbers of pluripotential and committed hematopoietic progenitors in the liver and differentiated lineages such as T cells in the thymus. Some gp130-/- embryos show anemia due to impaired development of erythroid lineage cells. These results indicate that gp130 plays a crucial role in myocardial development and hematopoiesis during embryogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An assay that allows measurement of absolute induction frequencies for DNA double-strand breaks (dsbs) in defined regions of the genome and that quantitates rejoining of correct DNA ends has been used to study repair of dsbs in normal human fibroblasts after x-irradiation. The approach involves hybridization of single-copy DNA probes to Not I restriction fragments separated according to size by pulsed-field gel electrophoresis. Induction of dsbs is quantitated from the decrease in the intensity of the hybridizing restriction fragment and an accumulation of a smear below the band. Rejoining of dsbs results in reconstitution of the intact restriction fragment only if correct DNA ends are joined. By comparing results from this technique with results from a conventional electrophoresis assay that detects all rejoining events, it is possible to quantitate the misrejoining frequency. Three Not I fragments on the long arm of chromosome 21 were investigated with regard to dsb induction, yielding an identical induction rate of 5.8 X 10(-3) break per megabase pair per Gy. Correct dsb rejoining was measured for two of these Not I fragments after initial doses of 80 and 160 Gy. The misrejoining frequency was about 25% for both fragments and was independent of dose. This result appears to be representative for the whole genome as shown by analysis of the entire Not I fragment distribution. The correct rejoining events primarily occurred within the first 2 h, while the misrejoining kinetics included a much slower component, with about half of the events occurring between 2 and 24 h. These misrejoining kinetics are similar to those previously reported for production of exchange aberrations in interphase chromosomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gene transfer efficiency of human hematopoietic stem cells is still inadequate for efficient gene therapy of most disorders. To overcome this problem, a selectable retroviral vector system for gene therapy has been developed for gene therapy of Gaucher disease. We constructed a bicistronic retroviral vector containing the human glucocerebrosidase (GC) cDNA and the human small cell surface antigen CD24 (243 bp). Expression of both cDNAs was controlled by the long terminal repeat enhancer/promoter of the Molony murine leukemia virus. The CD24 selectable marker was placed downstream of the GC cDNA and its translation was enhanced by inclusion of the long 5' untranslated region of encephalomyocarditis virus internal ribosomal entry site. Virus-producing GP+envAM12 cells were created by multiple supernatant transductions to create vector producer cells. The vector LGEC has a high titer and can drive expression of GC and the cell surface antigen CD24 simultaneously in transduced NIH 3T3 cells and Gaucher skin fibroblasts. These transduced cells have been successfully separated from untransduced cells by fluorescence-activated cell sorting, based on cell surface expression of CD24. Transduced and sorted NIH 3T3 cells showed higher GC enzyme activity than the unsorted population, demonstrating coordinated expression of both genes. Fibroblasts from Gaucher patients were transduced and sorted for CD24 expression, and GC enzyme activity was measured. The transduced sorted Gaucher fibroblasts had a marked increase in enzyme activity (149%) compared with virgin Gaucher fibroblasts (17% of normal GC enzyme activity). Efficient transduction of CD34+ hematopoietic progenitors (20-40%) was accomplished and fluorescence-activated cell sorted CD24(+)-expressing progenitors generated colonies, all of which (100%) were vector positive. The sorted, CD24-expressing progenitors generated erythroid burst-forming units, colony-forming units (CFU)-granulocyte, CFU-macrophage, CFU-granulocyte/macrophage, and CFU-mix hematopoietic colonies, demonstrating their ability to differentiate into these myeloid lineages in vitro. The transduced, sorted progenitors raised the GC enzyme levels in their progeny cells manyfold compared with untransduced CD34+ progenitors. Collectively, this demonstrates the development of high titer, selectable bicistronic vectors that allow isolation of transduced hematopoietic progenitors and cells that have been metabolically corrected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GATA-1 is a zinc-finger transcription factor that plays a critical role in the normal development of hematopoietic cell lineages. In human and murine erythroid cells a previously undescribed 40-kDa protein is detected with GATA-1-specific antibodies. We show that the 40-kDa GATA-1 (GATA-1s) is produced by the use of an internal AUG initiation codon in the GATA-1 transcript. The GATA-1 proteins share identical binding activity and form heterodimers in erythroleukemic cells but differ in their transactivation potential and in their expression in developing mouse embryos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Murine inducible nitric oxide (NO) synthase (iNOS) is catalytically active only in dimeric form. Assembly of its purified subunits into a dimer requires H4B. To understand the structure-activity relationships of human iNOS, we constitutively expressed recombinant human iNOS in NIH 3T3 cells by using a retroviral vector. These cells are deficient in de novo H4B biosynthesis and the role of H4B in the expression and assembly of active iNOS in an intact cell system could be studied. In the absence of added H4B, NO synthesis by the cells was minimal, whereas cells grown with supplemental H4B or the H4B precursor sepiapterin generated NO (74.1 and 63.3 nmol of nitrite per 10(6) cells per 24 h, respectively). NO synthesis correlated with an increase in intracellular H4B but no increase in iNOS protein. Instead, an increased percentage of dimeric iNOS was observed, rising from 20% in cytosols from unsupplemented cells to 66% in H4B-supplemented cell cytosols. In all cases, only dimeric iNOS displayed catalytic activity. Cytosols prepared from H4B-deficient cells exhibited little iNOS activity but acquired activity during a 60- to 120-min incubation with H4B, reaching final activities of 60-72 pmol of citrulline per mg of protein per min. Reconstitution of cytosolic NO synthesis activity was associated with conversion of monomers into dimeric iNOS during the incubation. Thus, human iNOS subunits dimerize to form an active enzyme, and H4B plays a critical role in promoting dimerization in intact cells. This reveals a post-translational mechanism by which intracellular H4B can regulate iNOS expression.