925 resultados para Engineering, Computer|Engineering, Electronics and Electrical|Engineering, Environmental


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES Optical scanners combined with computer-aided design and computer-aided manufacturing (CAD/CAM) technology provide high accuracy in the fabrication of titanium (TIT) and zirconium dioxide (ZrO) bars. The aim of this study was to compare the precision of fit of CAD/CAM TIT bars produced with a photogrammetric and a laser scanner. METHODS Twenty rigid CAD/CAM bars were fabricated on one single edentulous master cast with 6 implants in the positions of the second premolars, canines and central incisors. A photogrammetric scanner (P) provided digitized data for TIT-P (n=5) while a laser scanner (L) was used for TIT-L (n=5). The control groups consisted of soldered gold bars (gold, n=5) and ZrO-P with similar bar design. Median vertical distance between implant and bar platforms from non-tightened implants (one-screw test) was calculated from mesial, buccal and distal scanning electron microscope measurements. RESULTS Vertical microgaps were not significantly different between TIT-P (median 16μm; 95% CI 10-27μm) and TIT-L (25μm; 13-32μm). Gold (49μm; 12-69μm) had higher values than TIT-P (p=0.001) and TIT-L (p=0.008), while ZrO-P (35μm; 17-55μm) exhibited higher values than TIT-P (p=0.023). Misfit values increased in all groups from implant position 23 (3 units) to 15 (10 units), while in gold and TIT-P values decreased from implant 11 toward the most distal implant 15. SIGNIFICANCE CAD/CAM titanium bars showed high precision of fit using photogrammetric and laser scanners. In comparison, the misfit of ZrO bars (CAM/CAM, photogrammetric scanner) and soldered gold bars was statistically higher but values were clinically acceptable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND A majority of patients undergoing ablation of ventricular tachycardia have implanted devices precluding substrate imaging with delayed-enhancement MRI. Contrast-enhanced multidetector computed tomography (MDCT) can depict myocardial wall thickness with submillimetric resolution. We evaluated the relationship between regional myocardial wall thinning (WT) imaged by MDCT and arrhythmogenic substrate in postinfarction ventricular tachycardia. METHODS AND RESULTS We studied 13 consecutive postinfarction patients undergoing MDCT before ablation. MDCT data were integrated with high-density 3-dimensional electroanatomic maps acquired during sinus rhythm (endocardium, 509±291 points/map; epicardium, 716±323 points/map). Low-voltage areas (<1.5 mV) and local abnormal ventricular activities (LAVA) during sinus rhythm were assessed with regard to the WT. A significant correlation was found between the areas of WT <5 mm and endocardial low voltage (correlation-R=0.82; P=0.001), but no such correlation was found in the epicardium. The WT <5 mm area was smaller than the endocardial low-voltage area (54 cm(2) [Q1-Q3, 46-92] versus 71 cm(2) [Q1-Q3, 59-124]; P=0.001). Among a total of 13 060 electrograms reviewed in the whole study population, 538 LAVA were detected and analyzed. LAVA were located within the WT <5 mm (469/538 [87%]) or at its border (100% within 23 mm). Very late LAVA (>100 ms after QRS complex) were almost exclusively detected within the thinnest area (93% in the WT<3 mm). CONCLUSIONS Regional myocardial WT correlates to low-voltage regions and distribution of LAVA critical for the generation and maintenance of postinfarction ventricular tachycardia. The integration of MDCT WT with 3-dimensional electroanatomic maps can help focus mapping and ablation on the culprit regions, even when MRI is precluded by the presence of implanted devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To compare the precision of fit of full-arch implant-supported screw-retained computer-aided designed and computer-aided manufactured (CAD/CAM) titanium-fixed dental prostheses (FDP) before and after veneering. The null-hypothesis was that there is no difference in vertical microgap values between pure titanium frameworks and FDPs after porcelain firing. MATERIALS AND METHODS Five CAD/CAM titanium grade IV frameworks for a screw-retained 10-unit implant-supported reconstruction on six implants (FDI tooth positions 15, 13, 11, 21, 23, 25) were fabricated after digitizing the implant platforms and the cuspid-supporting framework resin pattern with a laser scanner (CARES(®) Scan CS2; Institut Straumann AG, Basel, Switzerland). A bonder, an opaquer, three layers of porcelain, and one layer of glaze were applied (Vita Titankeramik) and fired according to the manufacturer's preheating and fire cycle instructions at 400-800°C. The one-screw test (implant 25 screw-retained) was applied before and after veneering of the FDPs to assess the vertical microgap between implant and framework platform with a scanning electron microscope. The mean microgap was calculated from interproximal and buccal values. Statistical comparison was performed with non-parametric tests. RESULTS All vertical microgaps were clinically acceptable with values <90 μm. No statistically significant pairwise difference (P = 0.98) was observed between the relative effects of vertical microgap of unveneered (median 19 μm; 95% CI 13-35 μm) and veneered FDPs (20 μm; 13-31 μm), providing support for the null-hypothesis. Analysis within the groups showed significantly different values between the five implants of the FDPs before (P = 0.044) and after veneering (P = 0.020), while a monotonous trend of increasing values from implant 23 (closest position to screw-retained implant 25) to 15 (most distant implant) could not be observed (P = 0.169, P = 0.270). CONCLUSIONS Full-arch CAD/CAM titanium screw-retained frameworks have a high accuracy. Porcelain firing procedure had no impact on the precision of fit of the final FDPs. All implant microgap measurements of each FDP showed clinically acceptable vertical misfit values before and after veneering. Thus, the results do not only show accurate performance of the milling and firing but show also a reproducible scanning and designing process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. The purpose of the study is to provide a holistic depiction of behavioral & environmental factors contributing to risky sexual behaviors among predominantly high school educated, low-income African Americans residing in urban areas of Houston, TX utilizing the Theory of Gender and Power, Situational/Environmental Variables Theory, and Sexual Script Theory. Methods. A cross-sectional study was conducted via questionnaires among 215 Houston area residents, 149 were women and 66 were male. Measures used to assess behaviors of the population included a history of homelessness, use of crack/cocaine among several other illicit drugs, the type of sexual partner, age of participant, age of most recent sex partner, whether or not participants sought health care in the last 12 months, knowledge of partner's other sexual activities, symptoms of depression, and places where partner's were met. In an effort to determine risk of sexual encounters, a risk index employing the variables used to assess condom use was created categorizing sexual encounters as unsafe or safe. Results. Variables meeting the significance level of p<.15 for the bivariate analysis of each theory were entered into a binary logistic regression analysis. The block for each theory was significant, suggesting that the grouping assignments of each variable by theory were significantly associated with unsafe sexual behaviors. Within the regression analysis, variables such as sex for drugs/money, low income, and crack use demonstrated an effect size of ≥ ± 1, indicating that these variables had a significant effect on unsafe sexual behavioral practices. Conclusions. Variables assessing behavior and environment demonstrated a significant effect when categorized by relation to designated theories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To analyze the precision of fit of implant-supported screw-retained computer-aided-designed and computer-aided-manufactured (CAD/CAM) zirconium dioxide (ZrO) frameworks. MATERIALS AND METHODS Computer-aided-designed and computer-aided-manufactured ZrO frameworks (NobelProcera) for a screw-retained 10-unit implant-supported reconstruction on six implants (FDI positions 15, 13, 11, 21, 23, 25) were fabricated using a laser (ZrO-L, N = 6) and a mechanical scanner (ZrO-M, N = 5) for digitizing the implant platform and the cuspid-supporting framework resin pattern. Laser-scanned CAD/CAM titanium (TIT-L, N = 6) and cast CoCrW-alloy frameworks (Cast, N = 5) fabricated on the same model and designed similar to the ZrO frameworks were the control. The one-screw test (implant 25 screw-retained) was applied to assess the vertical microgap between implant and framework platform with a scanning electron microscope. The mean microgap was calculated from approximal and buccal values. Statistical comparison was performed with non-parametric tests. RESULTS No statistically significant pairwise difference was observed between the relative effects of vertical microgap between ZrO-L (median 14 μm; 95% CI 10-26 μm), ZrO-M (18 μm; 12-27 μm) and TIT-L (15 μm; 6-18 μm), whereas the values of Cast (236 μm; 181-301 μm) were significantly higher (P < 0.001) than the three CAD/CAM groups. A monotonous trend of increasing values from implant 23 to 15 was observed in all groups (ZrO-L, ZrO-M and Cast P < 0.001, TIT-L P = 0.044). CONCLUSIONS Optical and tactile scanners with CAD/CAM technology allow for the fabrication of highly accurate long-span screw-retained ZrO implant-reconstructions. Titanium frameworks showed the most consistent precision. Fit of the cast alloy frameworks was clinically inacceptable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N. Bostrom’s simulation argument and two additional assumptions imply that we are likely to live in a computer simulation. The argument is based upon the following assumption about the workings of realistic brain simulations: The hardware of a computer on which a brain simulation is run bears a close analogy to the brain itself. To inquire whether this is so, I analyze how computer simulations trace processes in their targets. I describe simulations as fictional, mathematical, pictorial, and material models. Even though the computer hardware does provide a material model of the target, this does not suffice to underwrite the simulation argument because the ways in which parts of the computer hardware interact during simulations do not resemble the ways in which neurons interact in the brain. Further, there are computer simulations of all kinds of systems, and it would be unreasonable to infer that some computers display consciousness just because they simulate brains rather than, say, galaxies.