921 resultados para Energy dispersive x-ray


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tracing interisland and interarchipelago movements of people and artifacts in prehistoric Polynesia has posed a challenge to archaeologists due to the lack of pottery and obsidian, two materials most readily used in studies of prehistoric trade or exchange. Here we report the application of nondestructive energy-dispersive x-ray fluorescence (EDXRF) analysis to the sourcing of Polynesian artifacts made from basalt, one of the most ubiquitous materials in Polynesian archaeological sites. We have compared excavated and surface-collected basalt adzes and adze flakes from two sites in Samoa (site AS-13-1) and the Cook Islands (site MAN-44), with source basalts from known prehistoric quarries in these archipelagoes. In both cases, we are able to demonstrate the importing of basalt adzes from Tutuila Island, a distance of 100 km to Ofu Island, and of 1600 km to Mangaia Island. These findings are of considerable significance for Polynesian prehistory, as they demonstrate the movement of objects not only between islands in the same group (where communities were culturally and linguistically related) but also between distant island groups. Further applications of EDXRF analysis should greatly aid archaeologists in their efforts to reconstruct ancient trade and exchange networks, not only in Polynesia but also in other regions where basalt was a major material for artifact production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalisadores de Ni (10% em massa) suportado em matrizes mistas MgO-SiO2 foram aplicados na reação de reforma a vapor de glicerol. Os efeitos do teor de MgO como aditivo e do método de preparação foram avaliados frente às propriedades físico-químicas e texturais dos materiais; assim como à atividade, seletividade, estabilidade e formação de carbono na reforma a vapor do glicerol. Os catalisadores foram preparados com diferentes teores mássicos de MgO (10%, 30% e 50%) sobre SiO2 comercial, utilizando processo via seca (mistura física) e via úmida (impregnação sequencial com diferentes solventes: água, etanol e acetona). Foram utilizadas as técnicas de caracterização de espectroscopia de energia dispersiva de raios X, fisissorção de nitrogênio, difratometria de raios X, termogravimetria, difratometria de raios X in situ com O2, redução a temperatura programada com H2, difratometria de raios X in situ com H2, dessorção a temperatura programada com H2 e microscopia eletrônica de varredura. Foi observado que o Ni(II) interage de forma variada com os suportes com diferentes teores de MgO, e que a polaridade do solvente de impregnação utilizado no processo de preparação influencia as propriedades dos catalisadores. A fim de verificar a atividade, seletividade e deposição de carbono; os catalisadores foram testados na reação de reforma a vapor de glicerol a 600oC, por um período de 5h e razão molar água:glicerol de 12:1. Após as reações, os catalisadores foram novamente submetidos às análises de termogravimetria, difratometria de raios X e microscopia eletrônica de varredura, visando a caracterização dos depósitos de carbono obtidos durante o processo catalítico. Os catalisadores de matrizes mistas se mostraram ativos e apresentaram seletividades similares para os produtos gasosos CH4, CO e CO2, além de um alto rendimento em H2. Observou-se que a adição de MgO no suporte, aumentou a dispersão do Ni(II) no material, que por sua vez, influenciou na quantidade de carbono depositado ao longo da reação. A polaridade do solvente de impregnação também teve influência na dispersão metálica, sendo que, quanto menor a polaridade do solvente, maior foi a dispersão obtida no catalisador, e menor a deposição de carbono na reação. O material que apresentou o melhor desempenho catalítico frente ao rendimento de H2 e à deposição de carbono, foi o catalisador preparado com 30% de MgO com etanol como solvente de impregnação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O processo tradicional de recuperação de metais de resíduos de equipamentos eletroeletrônicos (REEE) geralmente envolve processamento pirometalúrgico. Entretanto, o uso desta tecnologia para processar placas de circuito impresso (PCI) obsoletas pode levar à liberação de dioxinas e furanos, devido à decomposição térmica de retardantes de chama e resinas poliméricas presentes no substrato das placas. Portanto, este trabalho propõe uma rota hidrometalúrgica para recuperação de metais. O comportamento dos metais, com destaque para cobre, zinco e níquel, durante a lixiviação ácida, foi estudado em três temperaturas diferentes (35ºC, 65ºC e 75ºC), com e sem adição de um agente oxidante (peróxido de hidrogênio H2O2). A cinética de dissolução ácida desses metais foi estudada baseada na análise química por ICP-OES (Espectrometria de emissão ótica por plasma acoplado indutivamente) e EDX (Espectroscopia de fluorescência de raios-X por energia dispersiva). O balanço de massa e a análise química indicaram que a etapa de lixiviação sem adição de oxidante é pouco eficaz na extração dos metais, sendo responsável pela dissolução de menos do que 6% do total extraído. A 65ºC e H2SO4 1 mol/L, com adição de 5 mL de H2O2 (30%) a cada quinze minutos e densidade de polpa de 1 g / 10 mL, 98,1% do cobre, 99,9% do zinco e 99,0% do níquel foram extraídos após 4 horas. A cinética de dissolução desses metais é controlada pela etapa da reação química, seguindo, dependendo da temperatura, a equação 1 (1 XB)1/3 = k1.t ou a equação ln (1 XB) = k4.t.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catalytic activity and durability of 2 wt.% Pd/Al2O3 in powder and washcoated on cordierite monoliths were examined for the liquid phase hydrodechlorination (LPHDC) of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs), also known as dioxins. NaOH was employed as a neutralizing agent, and 2-propanol was used as a hydrogen donor and a solvent. Fresh and spent powder and monolith samples were characterized by elemental analysis, surface area, hydrogen chemisorption, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), and transmission electron microscopy/energy dispersive X-ray spectroscopy (TEM/EDX). Three reactor configurations were compared including the slurry and monolith batch reactors as well as the bubble loop column resulting in 100, 70, and 72% sample toxicity reduction, respectively, after 5 h of reaction. However, the slurry and monolith batch reactors lead to catalyst sample loss via a filtration process (slurry) and washcoat erosion (monolith batch), as well as rapid deactivation of the powder catalyst samples. The monolith employed in the bubble loop column remained stable and active after four reaction runs. Three preemptive regeneration methods were evaluated on spent monolith catalyst including 2-propanol washing, oxidation/reduction, and reduction. All three procedures reactivated the spent catalyst samples, but the combustion methods proved to be more efficient at eliminating the more stable poisons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different Pt- and Ru-doped Ti/SnO2–Sb electrodes were synthesized by thermal decomposition. The effect of the gradual substitution of Sb by Ru in the nominal composition on the physicochemical and electrochemical properties were evaluated. The electrochemical stability of the electrodes was estimated from accelerated tests at 0.5 A cm–2 in 1 M NaOH. Both as-synthesized and deactivated electrodes were thoroughly characterized by scanning electron microscopy (SEM), energy-dispersive X-ray microanalysis (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction analysis (XRD). The incorporation of a small amount (about 3 at. %) of both Pt and Ru into the SnO2–Sb electrodes produced a 400-times increase in their service life in alkaline medium, with no remarkable change in the electrocatalysis of the oxygen evolution reaction (OER). It is concluded that the deactivation of the electrodes is promoted by alkaline dissolution of metal species and coating detachment at high potentials. The introduction of Pt has a coating compacting effect, and Ru(IV), at low amounts until 9.75 at. %, replaces the Sn(IV) cations in the rutile-like SnO2 structure to form a solid solution that strongly increases the stability of the electrodes. The observed Ru segregation and decreased stability for larger Ru contents (x > 9.75 at. %), together with the selective dissolution of Ru after deactivation, suggest that the formation of a homogeneous (RuδSn1−δ)O2 single-phase is crucial for the stabilization of these electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selective hydrogenation of 2-methyl-3-butyn-2-ol (MBY) was performed in the presence of Lindlar catalyst, comparing conventional stirring with sonication at different frequencies of 40, 380 and 850 kHz. Under conventional stirring, the reaction rates were limited by intrinsic kinetics, while in the case of sonication, the reaction rates were 50–90% slower. However, the apparent reaction rates were found to be significantly frequency dependent with the highest rate observed at 40 kHz. The original and the recovered catalysts after the hydrogenation reaction were compared using bulk elemental analysis, powder X-ray diffraction and scanning and transmission electron microscopy coupled with energy-dispersive X-ray analysis. The studies showed that sonication led to the frequency-dependent fracturing of polycrystalline support particles with the highest impact caused by 40 kHz sonication, while monocrystals were undamaged. In contrast, the leaching of Pd/Pb particles did not depend on the frequency, which suggests that sonication removed only loosely-bound catalyst particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We herein report the synthesis of organic-inorganic hybrid poly(methyl methacrylate) containing 1 polyhedral oligosilsesquioxanes. Octakis(3-hydroxypropyldimethylsiloxy)octasilsesquioxane (OHPS) was synthesized from octakis(hydridodimethylsiloxy)octasilsesquioxane [Si8O12(OSiMe2H)(8), Q(8)M(8)(H)] following literature procedures. Octakis(tnethacryloxypropyldimethylsiloxy) octasilsesquioxane (OMPS) was synthesized via the reaction of methacryloyl chloride or methacrylic acid anhydride with OHPS, with the latter giving improved purity. Polymerization of OMPS with methyl inethacrylate using a dibenzoylperoxide initiator gave a highly cross-linked polymer. Characterization of the polymer was performed using Fourier transform IR spectroscopy, Si-29 NMR, differential scanning calorimetry, thermogravimetric analysis, atomic force microscopy, and transmission electron microscopy with energy-dispersive X-ray analysis. The polymer was found to be largely homogeneous. Increasing the OMPS concentration in the polymer gave increased decomposition and glass transition temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have synthesized ternary InGaAs nanowires on (111)B GaAs surfaces by metal-organic chemical vapor deposition. Au colloidal nanoparticles were employed to catalyze nanowire growth. We observed the strong influence of nanowire density on nanowire height, tapering, and base shape specific to the nanowires with high In composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Energy dispersive X-ray spectroscopy analysis together with high-resolution electron microscopy study of individual InGaAs nanowires shows large In/Ga compositional variation along the nanowire supporting the present diffusion model. Photoluminescence spectra exhibit a red shift with decreasing nanowire density due to the higher degree of In incorporation in more sparsely distributed InGaAs nanowires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was made of the corrosion behaviour in the ASTM standard Nitric acid and Oxalic acid tests, of two commercial AISI type 304L steels in the as received condition and after various heat treatments. Optical microscopy and SEM, TEM and STEM in conjunction with energy dispersive x-ray analysis, were used to correlate the corrosion behaviour of these steels with their microstructure. Some evidence of phosphorus segregation at grain boundaries was found. The corrosion behaviour at microstructural level was studied by examining on the TEM thin foils of steel that had been exposed to boiling nitric acid. Banding attack in the nitric acid and oxalic acid tests was studied using SEM and EPNA and found to be due to the micro-segregation of chromium and nickel. Using two experimental series of 304L, one a 17% Cr, 91 Ni, steel with phosphorus additions from 0.006% to 0.028%, the other a 20% Cr, 121 Ni steel with boron additions from 0.0011 to 0.00B51. The effect of these elements on corrosion in the nitric acid test was studied. The effect of different cooling rates and different solution treatment temperature on the behaviour of these steels was examined. TEM and STEM in conjunction with energy-dispersive x-ray analysis were again used to study the microstructure of the steels. Phosphorus was found to affect the corrosion behaviour but no effect was found with boron.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have suggested that incorporating relatively small quantities of titanium dioxide into bioactive glasses may result in an increase in bioactivity and hydroxyapatite formation. The present work therefore investigated the in vitro bioactivity of a titanium doped bioglass and compared the results with 45S5 bioglass. Apatite formation was evaluated for bioglass and Ti-bioglass in the presence and absence of foetal calf serum. Scanning electron microscopy (SEM) images were used to evaluate the surface development and energy dispersive X-ray measurements provided information on the elemental ratios. X-ray diffraction spectra confirmed the presence of apatite formation. Cell viability was assessed for bone marrow stromal cells under direct and indirect contact conditions and cell adhesion was assessed using SEM. © 2014 Springer Science+Business Media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study experimentally investigated methyl chloride (MeCl) purification method using an inhouse designed and built volumetric adsorption/desorption rig. MeCl is an essential raw material in the manufacture of silicone however all technical grades of MeCl contain concentrations (0.2 - 1.0 % wt) of dimethyl ether (DME) which poison the process. The project industrial partner had previously exhausted numerous separation methods, which all have been deemed not suitable for various reasons. Therefore, adsorption/desorption separation was proposed in this study as a potential solution with less economic and environmental impact. Pure component adsorption/desorption was carried out for DME and MeCl on six different adsorbents namely: zeolite molecular sieves (types 4 Å and 5 Å); silica gels (35-70 mesh, amorphous precipitated, and 35-60 mesh) and granular activated carbon (type 8-12 mesh). Subsequent binary gas mixture adsorption in batch and continuous mode was carried out on both zeolites and all three silica gels following thermal pre-treatment in vacuum. The adsorbents were tested as received and after being subjected to different thermal and vacuum pre-treatment conditions. The various adsorption studies were carried out at low pressure and temperature ranges of 0.5 - 3.5 atm and 20 - 100 °C. All adsorbents were characterised using Brunauer Emmett Teller (BET), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDXA) to investigate their physical and chemical properties. The well-known helium (He) expansion method was used to determine the empty manifold and adsorption cell (AC) regions and respective void volumes for the different adsorbents. The amounts adsorbed were determined using Ideal gas laws via the differential pressure method. The heat of adsorption for the various adsorbate-adsorbent (A-S) interactions was calculated using a new calorimetric method based on direct temperature measurements inside the AC. Further adsorption analysis included use of various empirical and kinetic models to determine and understand the behaviour of the respective interactions. The gas purification behaviour was investigated using gas chromatography and mass spectroscopy (GC-MC) analysis. Binary gas mixture samples were syringed from the manifold iii and AC outlet before and after adsorption/desorption analysis through manual sample injections into the GC-MS to detect and quantify the presence of DME and ultimately observe for methyl chloride purification. Convincing gas purification behaviour was confirmed using two different GC columns, thus giving more confidence on the measurement reliability. From the single pure component adsorption of DME and MeCl on the as received zeolite 4A subjected to 1 h vacuum pre-treatment, both gases exhibited pseudo second order adsorption kinetics with DME exhibiting a rate constant nearly double that of MeCl thus suggesting a faster rate of adsorption. From the adsorption isotherm classification both DME and MeCl exhibited Type II and I adsorption isotherm classifications, respectively. The strength of bonding was confirmed by the differential heat of adsorption measurement, which was found to be 23.30 and 10.21 kJ mol-1 for DME and MeCl, respectively. The former is believed to adsorb heterogeneously through hydrogen bonding whilst MeCl adsorbs homogenously via van der Waal’s (VDW) forces. Single pure component adsorption on as received zeolite 5A, silica gels (35-70, amorphous precipitated and 35-60) resulted in similar adsorption/desorption behaviour in similar quantities (mol kg-1). The adsorption isotherms for DME and MeCl on zeolite 5A, silica gels (35-70, amorphous precipitated and 35-60) and activated carbon 8-12 exhibited Type I classifications, respectively. Experiments on zeolite 5A indicated that DME adsorbed stronger, faster and with a slightly stronger strength of interaction than MeCl but in lesser quantities. On the silica gels adsorbents, DME exhibited a slightly greater adsorption capacity whilst adsorbing at a similar rate and strength of interaction compared to MeCl. On the activated carbon adsorbent, MeCl exhibited the greater adsorption capacity at a faster rate but with similar heats of adsorption. The effect of prolonged vacuum (15 h), thermal pre-treatment (150 °C) and extended equilibrium time (15 min) were investigated for the adsorption behaviour of DME and MeCl on both zeolites 4A and 5A, respectively. Compared to adsorption on as received adsorbents subjected to 1 h vacuum the adsorption capacities for DME and MeCl were found to increase by 1.95 % and 20.37 % on zeolite 4A and by 4.52 % and 6.69 % on zeolite 5A, respectively. In addition the empirical and kinetic models and differential heats of adsorption resulted in more definitive fitting curves and trends due to the true equilibrium position of the adsorbate with the adsorbent. Batch binary mixture adsorption on thermally and vacuum pre-treated zeolite 4A demonstrated purification behaviour of all adsorbents used for MeCl streams containing DME impurities, with a concentration as low as 0.66 vol. %. The GC-MS analysis showed no DME detection for the tested concentration mixtures at the AC outlet after 15 or 30 min, whereas MeCl was detectable in measurable amounts. Similar behaviour was also observed when carrying out adsorption in continuous mode. On the other hand, similar studies on the other adsorbents did not show such favourable MeCl purification behaviour. Overall this study investigated a wide range of adsorbents (zeolites, silica gels and activated carbon) and demonstrated for the first time potential to purify MeCl streams containing DME impurities using adsorption/desorption separation under different adsorbent pre-treatment and adsorption operating conditions. The study also revealed for the first time the adsorption isotherms, empirical and kinetic models and heats of adsorption for the respective adsorbentsurface (A-S) interactions. In conclusion, this study has shown strong evidence to propose zeolite 4A for adsorptive purification of MeCl. It is believed that with a technical grade MeCl stream competitive yet simultaneous co-adsorption of DME and MeCl occurs with evidence of molecular sieiving effects whereby the larger DME molecules are unable to penetrate through the adsorbent bed whereas the smaller MeCl molecules diffuse through resulting in a purified MeCl stream at the AC outlet. Ultimately, further studies are recommended for increased adsorption capacities by considering wider operating conditions, e.g. different adsorbent thermal and vacuum pre-treatment and adsorbing at temperatures closer to the boiling point of the gases and different conditions of pressure and temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation of nanostructured materials using natural clays as support, has been studied in literature under the same are found in nature and consequently, have a low price. Generally, clays serve as supports for metal oxides by increasing the number of active sites present on the surface and can be applied for various purposes such as adsorption, catalysis and photocatalysis. Some of the materials that are currently highlighted are niobium compounds, in particular, its oxides, by its characteristics such as high acidity, rigidity, water insolubility, oxidative and photocatalytic properties. In this scenario, the study aimed preparing a composite material oxyhydroxide niobium (NbO2OH) / sodium vermiculite clay and evaluate its effectiveness with respect to the natural clay (V0) and NbO2OH. The composite was prepared by precipitation-deposition method and then characterized by X-ray diffraction, infrared spectroscopy (XRD), energy dispersive X-ray (EDS), thermal analysis (TG/DTG), scanning electron microscopy (SEM), N2 adsorption-desorption and investigation of distribution of load. The application of the material NbO2OH/V0 was divided in two steps: first through oxidation and adsorption methods, and second through photocatalytic activity using solar irradiation. Studies of adsorption, oxidation and photocatalytic oxidation monitored the percentage of color removal from the dye methylene blue (MB) by UV-Vis spectroscopy. The XRD showed a decrease in reflection d (001) clay after modification; the FTIR indicated the presence of both the clay when the oxyhydroxide niobium to present bands in 1003 cm-1 related to Si-O stretching bands and 800 cm-1 to the Nb-O stretching. The presence of niobium was also confirmed by EDS indicated that 17 % by mass amount of the metal. Thermal analysis showed thermal stability of the composite at 217 °C and micrographs showed that there was a decrease in particle size. The investigation of the surface charge of NbO2OH/V0 found that the material exhibits a heterogeneous surface with average low and high negative charges. Adsorption tests showed that the composite NbO2OH/V0 higher adsorption capacity to remove 56 % of AM, while the material removed from V0 only 13 % showed no NbO2OH and adsorptive capacity due to the formation of H-aggregates. The percent removal of dye color for the oxidation tests showed little difference from the adsorption, being 18 and 66 % removal of dye color for V0 and NbO2OH/V0 respectively. The NbO2OH/V0 material shows excellent photocatalytic activity managing to remove just 95,5 % in 180 minutes of the color of MB compared to 41,4 % and 82,2 % of V0 the NbO2OH, proving the formation of a new composite with distinct properties of its precursors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pozzolanic materials such as rice husk ash are widely used to substitute part of cement, because they react with calcium hydroxide (CH) producing calcium silicate hydrate (C-S-H), which aggregate better physical, chemical and mechanical properties to the cement slurry. The usage of rice husk biomass ash from agribusiness in addition to or partially replacing cement is a noble purpose and a good way of sustainable development which currently is an obsession around the world. The ashes utilized in this study were characterized by: scanning electron microscopy technique (SEM), Fourier transform infrared spectroscopy (FTIR), Energy-dispersive X-ray spectroscopy (EDX) and BET method. The pozzolanic activity of RHA and WRHA in cement slurries was evaluated by: thermal-gravimetric technique and derivative thermogravimetry (TGA/DTG), X-ray diffraction (XRD) and Compressive Strength. The slurries formulated with additions of 10% and 20% of RHA and WRHA were cured for 28 days at 58 °C. The results of thermal analysis demonstrated that a 20% WRHA addition caused a reduction of approximately 73% of Portlandite (calcium hydroxide – CH) phase related to standard slurry (STD). The XRD scans also demonstrated the reduction of the Portlandite peaks’ intensity for each slurry compared with STD slurry. The RHA and WRHA react chemically with Portlandite producing calcium silicate hydrate (C-S-H), confirming their effect as a pozzolanic agent. The WRHA presented the best results as a pozzolanic material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research uses scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and inductively coupled plasma-mass spectrometry (ICP-MS) on cross-sections of iron artifacts sectioned from along shafts to determine the elemental constituents of a collection of Inuit and European artifacts from along the coast of Labrador. Hand-wrought iron nails from early historic period (16th – 18th centuries CE) Inuit sites in Labrador were originally manufactured by and acquired from early whalers and fishers of various European nationalities. The purpose of this research was to assess if the elements in different samples are sufficiently homogeneous to be viable for a provenience analysis to discern which Inuit nails were originally derived from which European groups; the Basque, English or French. The consistent relationships between the geochemical signatures of iron nails found in Inuit sites and historic nails derived from specific European groups could provide insights into the prevalence, activity and the nature of indigenous interactions of different European nationalities in the region over time. The results show that the methods applied to evaluate the geochemistry of the nails was not sufficient to detect meaningful patterns because the nails did not demonstrate the necessary degree of chemical uniformity among different samples in the same artifacts.