987 resultados para Energy constraints
Resumo:
On this paper we present a modified regularization scheme for Mathematical Programs with Complementarity Constraints. In the regularized formulations the complementarity condition is replaced by a constraint involving a positive parameter that can be decreased to zero. In our approach both the complementarity condition and the nonnegativity constraints are relaxed. An iterative algorithm is implemented in MATLAB language and a set of AMPL problems from MacMPEC database were tested.
Resumo:
A voltage limiter circuit for indoor light energy harvesting applications is presented. This circuit is a part of a bigger system, whose function is to harvest indoor light energy, process it and store it, so that it can be used at a later time. This processing consists on maximum power point tracking (MPPT) and stepping-up, of the voltage from the photovoltaic (PV) harvester cell. The circuit here described, ensures that even under strong illumination, the generated voltage will not exceed the limit allowed by the technology, avoiding the degradation, or destruction, of the integrated die. A prototype of the limiter circuit was designed in a 130 nm CMOS technology. The layout of the circuit has a total area of 23414 mu m(2). Simulation results, using Spectre, are presented.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
A start-up circuit, used in a micro-power indoor light energy harvesting system, is described. This start-up circuit achieves two goals: first, to produce a reset signal, power-on-reset (POR), for the energy harvesting system, and secondly, to temporarily shunt the output of the photovoltaic (PV) cells, to the output node of the system, which is connected to a capacitor. This capacitor is charged to a suitable value, so that a voltage step-up converter starts operating, thus increasing the output voltage to a larger value than the one provided by the PV cells. A prototype of the circuit was manufactured in a 130 nm CMOS technology, occupying an area of only 0.019 mm(2). Experimental results demonstrate the correct operation of the circuit, being able to correctly start-up the system, even when having an input as low as 390 mV using, in this case, an estimated energy of only 5.3 pJ to produce the start-up.
Resumo:
Avança dados das perspetivas de diferentes gerações sobre questões ambientais e consumo energético.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
This study evaluates the dosimetric impact caused by an air cavity located at 2 mm depth from the top surface in a PMMA phantom irradiated by electron beams produced by a Siemens Primus linear accelerator. A systematic evaluation of the effect related to the cavity area and thickness as well as to the electron beam energy was performed by using Monte Carlo simulations (EGSnrc code), Pencil Beam algorithm and Gafchromic EBT2 films. A home-PMMA phantom with the same geometry as the simulated one was specifically constructed for the measurements. Our results indicate that the presence of the cavity causes an increase (up to 70%) of the dose maximum value as well as a shift forward of the position of the depthedose curve, compared to the homogeneous one. Pronounced dose discontinuities in the regions close to the lateral cavity edges are observed. The shape and magnitude of these discontinuities change with the dimension of the cavity. It is also found that the cavity effect is more pronounced (6%) for the 12 MeV electron beam and the presence of cavities with large thickness and small area introduces more significant variations (up to 70%) on the depthedose curves. Overall, the Gafchromic EBT2 film measurements were found in agreement within 3% with Monte Carlo calculations and predict well the fine details of the dosimetric change near the cavity interface. The Pencil Beam calculations underestimate the dose up to 40% compared to Monte Carlo simulations; in particular for the largest cavity thickness (2.8 cm).
Resumo:
This paper presents work in progress, to develop an efficient and economic way to directly produce Technetium 99metastable (99mTc) using low-energy cyclotrons. Its importance is well established and relates with the increased global trouble in delivering 99mTc to Nuclear Medicine Departments relying on this radioisotope. Since the present delivery strategy has clearly demonstrated its intrinsic limits, our group decided to follow a distinct approach that uses the broad distribution of the low energy cyclotrons and the accessibility of Molybdenum 100 (100Mo) as the Target material. This is indeed an important issue to consider, since the system here presented, named CYCLOTECH, it is not based on the use of Highly Enriched (or even Low Enriched) Uranium 235 (235U), so entirely complying with the actual international trends and directives concerning the use of this potential highly critical material. The production technique is based on the nuclear reaction 100Mo (p,2n) 99mTc whose production yields have already been documented. Until this moment two Patent requests have already been submitted (the first at the INPI, in Portugal, and the second at the USPTO, in the USA); others are being prepared for submission on a near future. The object of the CYCLOTECH system is to present 99mTc to Nuclear Medicine radiopharmacists in a routine, reliable and efficient manner that, remaining always flexible, entirely blends with established protocols. To facilitate workflow and Radiation Protection measures, it has been developed a Target Station that can be installed on most of the existing PET cyclotrons and that will tolerate up to 400 μA of beam by allowing the beam to strike the Target material at an adequately oblique angle. The Target Station permits the remote and automatic loading and discharge of the Targets from a carriage of 10 Target bodies. On other hand, several methods of Target material deposition and Target substrates are presented. The object was to create a cost effective means of depositing and intermediate the target material thickness (25 - 100μm) with a minimum of loss on a substrate that is able to easily transport the heat associated with high beam currents. Finally, the separation techniques presented are a combination of both physical and column chemistry. The object was to extract and deliver 99mTc in the identical form now in use in radiopharmacies worldwide. In addition, the Target material is recovered and can be recycled.
Resumo:
Objective - To evaluate the effect of prepregnancy body mass index (BMI), energy and macronutrient intakes during pregnancy, and gestational weight gain (GWG) on the body composition of full-term appropriate-for-gestational age neonates. Study Design - This is a cross-sectional study of a systematically recruited convenience sample of mother-infant pairs. Food intake during pregnancy was assessed by food frequency questionnaire and its nutritional value by the Food Processor Plus (ESHA Research Inc, Salem, OR). Neonatal body composition was assessed both by anthropometry and air displacement plethysmography. Explanatory models for neonatal body composition were tested by multiple linear regression analysis. Results - A total of 100 mother-infant pairs were included. Prepregnancy overweight was positively associated with offspring weight, weight/length, BMI, and fat-free mass in the whole sample; in males, it was also positively associated with midarm circumference, ponderal index, and fat mass. Higher energy intake from carbohydrate was positively associated with midarm circumference and weight/length in the whole sample. Higher GWG was positively associated with weight, length, and midarm circumference in females. Conclusion - Positive adjusted associations were found between both prepregnancy BMI and energy intake from carbohydrate and offspring body size in the whole sample. Positive adjusted associations were also found between prepregnancy overweight and adiposity in males, and between GWG and body size in females.
Resumo:
The introduction of electricity markets and integration of Distributed Generation (DG) have been influencing the power system’s structure change. Recently, the smart grid concept has been introduced, to guarantee a more efficient operation of the power system using the advantages of this new paradigm. Basically, a smart grid is a structure that integrates different players, considering constant communication between them to improve power system operation and management. One of the players revealing a big importance in this context is the Virtual Power Player (VPP). In the transportation sector the Electric Vehicle (EV) is arising as an alternative to conventional vehicles propel by fossil fuels. The power system can benefit from this massive introduction of EVs, taking advantage on EVs’ ability to connect to the electric network to charge, and on the future expectation of EVs ability to discharge to the network using the Vehicle-to-Grid (V2G) capacity. This thesis proposes alternative strategies to control these two EV modes with the objective of enhancing the management of the power system. Moreover, power system must ensure the trips of EVs that will be connected to the electric network. The EV user specifies a certain amount of energy that will be necessary to charge, in order to ensure the distance to travel. The introduction of EVs in the power system turns the Energy Resource Management (ERM) under a smart grid environment, into a complex problem that can take several minutes or hours to reach the optimal solution. Adequate optimization techniques are required to accommodate this kind of complexity while solving the ERM problem in a reasonable execution time. This thesis presents a tool that solves the ERM considering the intensive use of EVs in the smart grid context. The objective is to obtain the minimum cost of ERM considering: the operation cost of DG, the cost of the energy acquired to external suppliers, the EV users payments and remuneration and penalty costs. This tool is directed to VPPs that manage specific network areas, where a high penetration level of EVs is expected to be connected in these areas. The ERM is solved using two methodologies: the adaptation of a deterministic technique proposed in a previous work, and the adaptation of the Simulated Annealing (SA) technique. With the purpose of improving the SA performance for this case, three heuristics are additionally proposed, taking advantage on the particularities and specificities of an ERM with these characteristics. A set of case studies are presented in this thesis, considering a 32 bus distribution network and up to 3000 EVs. The first case study solves the scheduling without considering EVs, to be used as a reference case for comparisons with the proposed approaches. The second case study evaluates the complexity of the ERM with the integration of EVs. The third case study evaluates the performance of scheduling with different control modes for EVs. These control modes, combined with the proposed SA approach and with the developed heuristics, aim at improving the quality of the ERM, while reducing drastically its execution time. The proposed control modes are: uncoordinated charging, smart charging and V2G capability. The fourth and final case study presents the ERM approach applied to consecutive days.
Resumo:
Background: Addition of energy supplements to preterm formulas is an optional strategy to increase the energy intake in infants requiring fluid restriction, in conditions like bronchopulmonary dysplasia. This strategy may lead to an undesirable increase in osmolality of feeds, the maximum recommended safe limit being 400 mOsm/kg. The aim of the study was to measure the changes in osmolality of several commercialized preterm formulas after addition of glucose polymers and medium-chain triglycerides. Methods: Osmolality was measured by the freezing point depression method. Six powdered formulas with concentrations of 14 g/100 ml and 16 g/100 ml, and five ready-to-feed liquid formulas were analyzed. All formulas, were supplemented with 10% (low supplementation) or 20% (high supplementation) of additional calories, respectively, in the form of glucose polymers and medium chain triglycerides, maintaining a 1:1 glucose:lipid calorie ratio. Inter-analysis and intra-analysis coefficients of variation of the measurements were always < 3.9%. Results: The mean osmolality (mOsm/kg) of the non-supplemented formulas varied between 268.5 and 315.3 mOsm/kg, increasing by 3–5% in low supplemented formulas, and by 6–10% in high supplemented formulas. None of the formulas analyzed exceeded 352.8 mOsm/kg. Conclusion: The supplementation of preterm formulas with nonprotein energy supplements with up to 20% additional calories did not exceed the maximum recommended osmolality for neonatal feedings.
Resumo:
For the past years wireless sensor networks (WSNs) have been coined as one of the most promising technologies for supporting a wide range of applications. However, outside the research community, few are the people who know what they are and what they can offer. Even fewer are the ones that have seen these networks used in real world applications. The main obstacle for the proliferation of these networks is energy, or the lack of it. Even though renewable energy sources are always present in the networks environment, designing devices that can efficiently scavenge that energy in order to sustain the operation of these networks is still an open challenge. Energy scavenging, along with energy efficiency and energy conservation, are the current available means to sustain the operation of these networks, and can all be framed within the broader concept of “Energetic Sustainability”. A comprehensive study of the several issues related to the energetic sustainability of WSNs is presented in this thesis, with a special focus in today’s applicable energy harvesting techniques and devices, and in the energy consumption of commercially available WSN hardware platforms. This work allows the understanding of the different energy concepts involving WSNs and the evaluation of the presented energy harvesting techniques for sustaining wireless sensor nodes. This survey is supported by a novel experimental analysis of the energy consumption of the most widespread commercially available WSN hardware platforms.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial
Resumo:
The purpose of this study is to analyse the interlimb relation and the influence of mechanical energy on metabolic energy expenditure during gait. In total, 22 subjects were monitored as to electromyographic activity, ground reaction forces and VO2 consumption (metabolic power) during gait. The results demonstrate a moderate negative correlation between the activity of tibialis anterior, biceps femoris and vastus medialis of the trailing limb during the transition between midstance and double support and that of the leading limb during double support for the same muscles, and between these and gastrocnemius medialis and soleus of the trailing limb during double support. Trailing limb soleus during the transition between mid-stance and double support was positively correlated to leading limb tibialis anterior, vastus medialis and biceps femoris during double support. Also, the trailing limb centre of mass mechanical work was strongly influenced by the leading limbs, although only the mechanical power related to forward progression of both limbs was correlated to metabolic power. These findings demonstrate a consistent interlimb relation in terms of electromyographic activity and centre of mass mechanical work, being the relations occurred in the plane of forward progression the more important to gait energy expenditure.
Resumo:
This paper presents a complete, quadratic programming formulation of the standard thermal unit commitment problem in power generation planning, together with a novel iterative optimisation algorithm for its solution. The algorithm, based on a mixed-integer formulation of the problem, considers piecewise linear approximations of the quadratic fuel cost function that are dynamically updated in an iterative way, converging to the optimum; this avoids the requirement of resorting to quadratic programming, making the solution process much quicker. From extensive computational tests on a broad set of benchmark instances of this problem, the algorithm was found to be flexible and capable of easily incorporating different problem constraints. Indeed, it is able to tackle ramp constraints, which although very important in practice were rarely considered in previous publications. Most importantly, optimal solutions were obtained for several well-known benchmark instances, including instances of practical relevance, that are not yet known to have been solved to optimality. Computational experiments and their results showed that the method proposed is both simple and extremely effective.