992 resultados para Elemental carbon
Resumo:
The aims of the project were to scope and develop sustainable energy curriculum frameworks for Australian higher education Institutions that meet the needs of Australian and international student graduates and employers, both now and into the near future. The focus was on student centred learning and outcomes and to support graduates with the knowledge, skills and generic attributes required to work in the rapidly expanding sustainable energy industry in Australia and globally. The outputs of the project are designed to be relevant to specialist Sustainable Engineering and Energy Studies programs, as well as conventional engineering, science and humanities and social science programs that have a sustainable energy focus or major.
Resumo:
Glassy carbon (GC) electrode modified with a self-assembled monolayer (SAM) of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) was used for the selective and highly sensitive determination of nitric oxide (NO). The SAM of 4α-CoIITAPc was formed on GC electrode by spontaneous adsorption from DMF containing 1 mM 4α-CoIITAPc. The SAM showed two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2 in 0.2 M phosphate buffer (PB) solution (pH 2.5). The SAM modified electrode showed excellent electrocatalytic activity towards the oxidation of nitric oxide (NO) by enhancing its oxidation current with 310 mV less positive potential shift when compared to bare GC electrode. In amperometric measurements, the current response for NO oxidation was linearly increased in the concentration range of 3×10−9 to 30×10−9 M with a detection limit of 1.4×10−10 M (S/N=3). The proposed method showed a better recovery for NO in human blood serum samples.
Resumo:
Spontaneous adsorption of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) on glassy carbon (GC) electrode leads to the formation of a stable self-assembled monolayer (SAM). Since the SAM of 4α-CoIITAPc is redox active, its adsorption on GC electrode was followed by cyclic voltammetry. SAM of 4α-CoIITAPc on GC electrode shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) value, calculated by integrating the charge under CoII oxidation, was used to study the adsorption thermodynamics and kinetics of 4α-CoIITAPc on GC surface. Cyclic voltammetric studies show that the adsorption of 4α-CoIITAPc on GC electrode has reached the saturation coverage (Γs) within 3 h. The Γs value for the SAM of 4α-CoIITAPc on GC electrode was found to be 2.37 × 10−10 mol cm−2. Gibbs free energy (ΔGads) and adsorption rate constant (kad) for the adsorption of 4α-CoIITAPc on GC surface were found to be −16.76 kJ mol−1 and 7.1 M−1 s−1, respectively. The possible mechanism for the self-assembly of 4α-CoIITAPc on GC surface is through the addition of nucleophilic amines to the olefinic bond on the GC surface in addition to a meager contribution from π stacking. The contribution of π stacking was confirmed from the adsorption of unsubstituted phthalocyanatocobalt(II) (CoPc) on GC electrode. Raman spectra for the SAM of 4α-CoIITAPc on carbon surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Raman and CV studies suggest that 4α-CoIITAPc is adopting nearly a flat orientation or little bit tilted orientation.
Resumo:
Electropolymerized film of 3,3′,3″,3‴-tetraaminophthalocyanatonickel(II) (p-NiIITAPc) on glassy carbon (GC) electrode was used for the selective and stable determination of 3,4-dihydroxy-l-phenylalanine (l-dopa) in acetate buffer (pH 4.0) solution. Bare GC electrode fails to determine the concentration of l-dopa accurately in acetate buffer solution due to the cyclization reaction of dopaquinone to cyclodopa in solution. On the other hand, p-NiIITAPc electrode successfully determines the concentration of l-dopa accurately because the cyclization reaction was prevented at this electrode. It was found that the electrochemical reaction of l-dopa at the modified electrode is faster than that at the bare GC electrode. This was confirmed from the higher heterogeneous electron transfer rate constant (k0) of l-dopa at p-NiIITAPc electrode (3.35 × 10−2 cm s−1) when compared to that at the bare GC electrode (5.18 × 10−3 cm s−1). Further, it was found that p-NiIITAPc electrode separates the signals of ascorbic acid (AA) and l-dopa in a mixture with a peak separation of 220 mV. Lowest detection limit of 100 nM was achieved at the modified electrode using amperometric method. Common physiological interferents like uric acid, glucose and urea does not show any interference within the potential window of l-dopa oxidation. The present electrode system was also successfully applied to estimate the concentration of l-dopa in the commercially available tablets.
Resumo:
We fabricated high performance supercapacitors by using all carbon electrodes, with volume energy in the order of 10−3 Whcm−3, comparable to Li-ion batteries, and power densities in the range of 10 Wcm−3, better than laser-scribed-graphene supercapacitors. All-carbon supercapacitor electrodes are made by solution processing and filtering electrochemically-exfoliated graphene sheets mixed with clusters of spontaneously entangled multiwall carbon nanotubes. We maximize the capacitance by using a 1:1 weight ratio of graphene to multi-wall carbon nanotubes and by controlling their packing in the electrode film so as to maximize accessible surface and further enhance the charge collection. This electrode is transferred onto a plastic-paper-supported double-wall carbon nanotube film used as current collector. These all-carbon thin films are combined with plastic paper and gelled electrolyte to produce solid-state bendable thin film supercapacitors. We assembled supercapacitor cells in series in a planar configuration to increase the operating voltage and find that the shape of our supercapacitor film strongly affects its capacitance. An in-line superposition of rectangular sheets is superior to a cross superposition in maintaining high capacitance when subject to fast charge/discharge cycles. The effect is explained by addressing the mechanism of ion diffusion into stacked graphene sheets.
Resumo:
The use of circular hollow steel members has attracted a great deal of attention during past few years because of having excellent structural properties, aesthetic appearance, corrosion and fire protection capability. However, no one can deny the structural deficiency of such structures due to reduction of strength when they are exposed to severe environmental conditions such as marine environment, cold and hot weather. Hence strengthening and retrofitting of structural steel members is now very imperative. This paper presents the findings of a research program that was conducted to study the bond durability of carbon fibre-reinforced polymer (CFRP) strengthened steel tubular members under cold weather and tested under four-point bending. Six number of CFRP-strengthened specimens and one unstrengthened specimen were considered in this program. The three specimens having sand blasted surface to be strengthened was pre-treated with MBrace primer and other three were remained untreated and then cured under ambient temperature at least four weeks and cold weather (3 C) for three and six months period of time. Quasi-static tests were then performed on beams to failure under four-point bending. The structural response of each specimen was predicted in terms of failure load, mid-span deflection, composite beam behaviour and failure mode. The research outcomes show that the cold weather immersion had an adverse effect on durability of CFRP-strengthened steel structures. Moreover, the epoxy based adhesion promoter was found to enhance the bond durability in plastic range. The analytical models presented in this study were found to be in good agreement in terms of predicting ultimate load and deflection. Finally, design factors are proposed to address the short-terms durability performance under cold weather.
Resumo:
Carbon nanoscrolls (CNSs) are one of the carbon-based nanomaterials similar to carbon nanotubes (CNTs) but are not widely studied in spite of their great potential applications. Their practical applications are hindered by the challenging fabrication of the CNSs. A physical approach has been proposed recently to fabricate the CNS by rolling up a monolayer graphene nanoribbon (GNR) around a CNT driven by the interaction energy between them. In this study, we perform extensive molecular dynamics (MD) simulations to investigate the various factors that impact the formation of the CNS from GNR. Our simulation results show that the formation of the CNS is sensitive to the length of the CNT and temperature. When the GNR is functionalized with hydrogen, the formation of the CNS is determined by the density and distribution of the hydrogen atoms. Graphyne, the allotrope of graphene, is inferior to graphene in the formation of the CNS due to the weaker bonds and the associated smaller atom density. The mechanism behind the rolling of GNR into CNS lies in the balance between the GNR–CNT van der Waals (vdW) interactions and the strain energy of GNR. The present work reveals new important insights and provides useful guidelines for the fabrication of the CNS.
Resumo:
In recent years, there has been a significant trend toward land acquisition in developing countries, establishing forestry plantations for offsetting carbon pollution generated in the Global North. Badged as “green economic development,” global carbon markets are often championed not only as solutions to climate change, but as drivers of positive development outcomes for local communities. But there is mounting evidence that these corporate land acquisitions for climate change mitigation—including forestry plantations—severely compromise not only local ecologies but also the livelihoods of the some of the world’s most vulnerable people living at subsistence level in rural areas in developing countries.
Resumo:
Novel filter Palygorskite porous ceramsite (PC) was prepared using Palygorskite clay, poreforming material sawdust, and sodium silicate with a mass ratio of 10:2:1 after sintering at 700°C for 180 min. PC was characterized with X-ray diffraction, X-ray fluorescence, scanning electron microscopy, elemental, and porosimetry. PC had a total porosity of 67% and specific surface area of 61 m2/g. In order to assess the usefulness of PC as a medium for biological aerated filters (BAF), PC and (commercially available ceramsite) CAC were used to treat wastewater city in two laboratory-scale upflow BAFs. The results showed that the reactor containing PC was more efficient than the reactor containing CAC in terms of total organic carbon (TOC), ammonia nitrogen (NH3-N), and the removal of total nitrogen (TN) and phosphorus (P). This system was found to be more efficient at water temperatures ranging from 20 to 26°C, an air–water (A/W) ratio of 3:1, dissolved oxygen concentration >4.00 mg/L, and hydraulic retention time (HRT) ranging from 0.5 to 7 h. The interconnected porous structure produced for PC was suitable for microbial growth, and primarily protozoan and metazoan organisms were found in the biofilm. Microorganism growth also showed that, under the same submerged culture conditions, the biological mass in PC was significantly higher than in CAC (34.1 and 2.2 mg TN/g, respectively). In this way, PC media can be considered suitable for the use as a medium in novel biological aerated filters for the simultaneous removal of nitrogen and phosphorus.
Resumo:
Steel hollow sections used in structures such as bridges, buildings and space structures involve different strengthening techniques according to their structural purpose and shape of the structural member. One such technique is external bonding of CFRP sheets to steel tubes. The performance of CFRP strengthening for steel structures has been proven under static loading while limited studies have been conducted on their behaviour under impact loading. In this study, a comprehensive numerical investigation is carried out to evaluate the response of CFRP strengthened steel tubes under dynamic axial impact loading. Impact force, axial deformation impact velocities are studied. The results of the numerical investigations are validated by experimental results. Based on the developed finite element (FE) model several output parameters are discussed. The results show that CFRP wrapping is an effective strengthening technique to increase the axial dynamic load bearing capacity by increasing the stiffness of the steel tube.
Resumo:
Acoustic emission technique has become a significant and powerful structural health monitoring tool for structures. Researches to date have been done on crack location, fatigue crack propagation in materials and severity assessment of failure using acoustic emission technique. Determining severity of failure in steel structures using acoustic emission technique is still a challenge to accurately determine the relationship between the severity of crack propagation and acoustic emission activities. In this study three point bending test on low carbon steel samples along with acoustic emission technique have been used to determine crack propagation and severity. A notch is introduced at the tension face of the loading point to the samples to initiate the crack. The results show that the percentage of load drop of the steel specimen has a reciprocal relationship with the crack opening i.e. crack opening zones are influenced by the loading rate. In post yielding region, common acoustic emission signal parameters such as, signal strength, energy and amplitudes are found to be higher than those at pre-yielding and at yielding.
Resumo:
The primary requirements for high-biomass-concentration microalgal cultivation include a photon source and distribution, efficient gas exchange and suitable growth medium composition. However, for mass outdoor production of microalgae, growth medium composition is a major controlling factor as most of the other factors such as light source and distribution are virtually uncontrollable. This work utilises an elemental balance approach between growth medium and biomass compositions to obtain high-density microalgal cultures in an open system. F medium, commonly used for the cultivation of marine microalgae such as Tetraselmis suecica was redesigned on the basis of increasing the biomass capacity of its major deficient components to support high biomass concentrations (τ ∼ 5.0 % for N, S and τ ∼ 10 % P), and the entire formulation was dissolved in 0.2 um sterile filtered natural seawater. Results show that the new medium (F') displayed a maximum biomass concentration and total lipid concentration of 1.29 g L 1 and 108.7 mg L 1 respectively, which represents over 2-fold increase compared to that of the F medium. Keeping all variables constant except growth medium, and using F medium as the base case of 1 medium cost (MC) unit mg -1 lipid, the F' medium yielded lipid at a cost of only 0.35 MC unit mg -1 lipids. These results show that greater amounts of biomass and lipids can be obtained more economically with minimal extra effort simply by using an optimised growth medium.