978 resultados para Electronic energy meter
Resumo:
We report the first measurements of the moments--mean (M), variance (σ(2)), skewness (S), and kurtosis (κ)--of the net-charge multiplicity distributions at midrapidity in Au+Au collisions at seven energies, ranging from sqrt[sNN]=7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net charge, and are sensitive to the location of the QCD critical point. We compare the products of the moments, σ(2)/M, Sσ, and κσ(2), with the expectations from Poisson and negative binomial distributions (NBDs). The Sσ values deviate from the Poisson baseline and are close to the NBD baseline, while the κσ(2) values tend to lie between the two. Within the present uncertainties, our data do not show nonmonotonic behavior as a function of collision energy. These measurements provide a valuable tool to extract the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.
Resumo:
Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.
Resumo:
In this work we report new silicon and germanium tubular nanostructures with no corresponding stable carbon analogues. The electronic and mechanical properties of these new tubes were investigated through ab initio methods. Our results show that these structures have lower energy than their corresponding nanoribbon structures and are stable up to high temperatures (500 and 1000 K, for silicon and germanium tubes, respectively). Both tubes are semiconducting with small indirect band gaps, which can be significantly altered by both compressive and tensile strains. Large bandgap variations of almost 50% were observed for strain rates as small as 3%, suggesting their possible applications in sensor devices. They also present high Young's modulus values (0.25 and 0.15 TPa, respectively). TEM images were simulated to help in the identification of these new structures.
Resumo:
Removable partial dentures (RPD) demand specific hygienic cleaning and the combination of brushing with immersion in chemical solutions has been the most recommended method for control of biofilm. However, the effect of the cleansers on metallic components has not been widely investigated. This study evaluated the effect of different cleansers on the surface of RPD. Five disc specimens (12 mm x 3 mm metallic disc centered in a 38 x 18 x 4 mm mould filled with resin) were obtained for each experimental situation: 6 solutions [Periogard (PE), Cepacol (CE), Corega Tabs (CT), Medical Interporous (MI), Polident (PO), 0.05% sodium hypochlorite (NaOCl), and distilled water (DW) control] and 2 Co-Cr alloys [DeguDent (DD) and VeraPDI (VPDI)] were used for each experimental situation. A 180-day immersion was simulated and the measurements of roughness (Ra, µm) of metal and resin were analyzed using 2-way ANOVA and Tukey’s test. The surface changes and tarnishes were examined with a scanning electronic microscopy (SEM). In addition, energy dispersive x-ray spectrometry (EDS) analysis was carried out at representative areas. Visually, NaOCl and MI specimens presented surface tarnishes. The roughness of materials was not affected by the solutions (p>0.05). SEM images showed that NaOCl and MI provided surface changes. EDS analysis revealed the presence of oxygen for specimens in contact with both MI and NaOCl solutions, which might suggest that the two solutions promoted the oxidation of the surfaces, thus leading to spot corrosion. Within the limitations of this study, it may be concluded that the NaOCl and MI may not be suitable for cleaning of RPD.
Resumo:
INTRODUCTION: Open access publishing is becoming increasingly popular within the biomedical sciences. SciELO, the Scientific Electronic Library Online, is a digital library covering a selected collection of Brazilian scientific journals many of which provide open access to full-text articles.This library includes a number of dental journals some of which may include reports of clinical trials in English, Portuguese and/or Spanish. Thus, SciELO could play an important role as a source of evidence for dental healthcare interventions especially if it yields a sizeable number of high quality reports. OBJECTIVE: The aim of this study was to identify reports of clinical trials by handsearching of dental journals that are accessible through SciELO, and to assess the overall quality of these reports. MATERIAL AND METHODS: Electronic versions of six Brazilian dental Journals indexed in SciELO were handsearched at www.scielo.br in September 2008. Reports of clinical trials were identified and classified as controlled clinical trials (CCTs - prospective, experimental studies comparing 2 or more healthcare interventions in human beings) or randomized controlled trials (RCTs - a random allocation method is clearly reported), according to Cochrane eligibility criteria. CRITERIA TO ASSESS METHODOLOGICAL QUALITY INCLUDED: method of randomization, concealment of treatment allocation, blinded outcome assessment, handling of withdrawals and losses and whether an intention-to-treat analysis had been carried out. RESULTS: The search retrieved 33 CCTs and 43 RCTs. A majority of the reports provided no description of either the method of randomization (75.3%) or concealment of the allocation sequence (84.2%). Participants and outcome assessors were reported as blinded in only 31.2% of the reports. Withdrawals and losses were only clearly described in 6.5% of the reports and none mentioned an intention-to-treat analysis or any similar procedure. CONCLUSIONS: The results of this study indicate that a substantial number of reports of trials and systematic reviews are available in the dental journals listed in SciELO, and that these could provide valuable evidence for clinical decision making. However, it is clear that the quality of a number of these reports is of some concern and that improvement in the conduct and reporting of these trials could be achieved if authors adhered to internationally accepted guidelines, e.g. the CONSORT statement.
Resumo:
The present study evaluated the effect of repeated simulated microwave disinfection on physical and mechanical properties of Clássico, Onda-Cryl and QC-20 denture base acrylic resins. Aluminum patterns were included in metallic or plastic flasks with dental stone following the traditional packing method. The powder/liquid mixing ratio was established according to the manufacturer's instructions. After water-bath polymerization at 74ºC for 9 h, boiling water for 20 min or microwave energy at 900 W for 10 min, the specimens were deflasked after flask cooling and finished. Each specimen was immersed in 150 mL of distilled water and underwent 5 disinfection cycles in a microwave oven set at 650 W for 3 min. Non-disinfected and disinfected specimens were subjected to the following tets: Knoop hardness test was performed with 25 g load for 10 s, impact strength test was done using the Charpy system with 40 kpcm, and 3-point bending test (flexural strength) was performed at a crosshead speed of 0.5 mm/min until fracture. Data were analyzed statistically by ANOVA and Tukey's test (α= 0.05%). Repeated simulated microwave disinfections decreased the Knoop hardness of Clássico and Onda-Cryl resins and had no effect on the impact strength of QC-20. The flexural strength was similar for all tested resins.
Resumo:
The present study compared the accuracy of three electronic apex locators (EALs) - Elements Diagnostic®, Root ZX® and Apex DSP® - in the presence of different irrigating solutions (0.9% saline solution and 1% sodium hypochlorite). The electronic measurements were carried out by three examiners, using twenty extracted human permanent maxillary central incisors. A size 10 K file was introduced into the root canals until reaching the 0.0 mark, and was subsequently retracted to the 1.0 mark. The gold standard (GS) measurement was obtained by combining visual and radiographic methods, and was set 1 mm short of the apical foramen. Electronic length values closer to the GS (± 0.5 mm) were considered as accurate measures. Intraclass correlation coefficients (ICCs) were used to verify inter-examiner agreement. The comparison among the EALs was performed using the McNemar and Kruskal-Wallis tests (p < 0.05). The ICCs were generally high, ranging from 0.8859 to 0.9657. Similar results were observed for the percentage of electronic measurements closer to the GS obtained with the Elements Diagnostic® and the Root ZX® EALs (p > 0.05), independent of the irrigating solutions used. The measurements taken with these two EALs were more accurate than those taken with Apex DSP®, regardless of the irrigating solution used (p < 0.05). It was concluded that Elements Diagnostic® and Root ZX® apex locators are able to locate the cementum-dentine junction more precisely than Apex DSP®. The presence of irrigating solutions does not interfere with the performance of the EALs.
Resumo:
The effects were assessed of two energy sources in concentrate (ground grain corn vs. citrus pulp) and two nitrogen sources (soybean meal vs. urea) on rumen metabolism in four buffaloes and four zebu cattle (Nellore) with rumen cannula and fed in a 4 × 4 Latin square design with feeds containing 60% sugar cane. Energy supplements had no effect on the rumen ammonia concentration in cattle, but ground grain corn promoted higher ammonia level than citrus pulp in buffalo. Urea produced higher ammonia level than soybean meal in both animal species. On average, the buffaloes maintained a lower rumen ammonia concentration (11.7 mg/dL) than the cattle (14.5 mg/dL). Buffaloes had lower production of acetic acid than cattle (58.7 vs. 61.6 mol/100 mol) and higher of propionic acid (27.4 vs. 23.6 mol/100 mol). There was no difference in the butyric acid production between the buffaloes (13.6 mol/100 mol) and cattle (14.8 mol/100 mol) and neither in the total volatile fatty acids concentration (82.5 vs. 83.6 mM, respectively). The energy or nitrogen sources had no effect on rumen protozoa count in either animal species. The zebu cattle had higher rumen protozoa population (8.8 × 10(5)/mL) than the buffaloes (6.1 × 10(5)/mL). The rumen protozoa population differed between the animal species, except for Dasytricha and Charonina. The buffaloes had a lower Entodinium population than the cattle (61.0 vs 84.9%, respectively) and a greater percentage of species belonging to the Diplodiniinae subfamily than the cattle (28.6 vs. 1.4%, respectively). In cattle, ground corn is a better energy source than citrus pulp for use by Entodinium and Diplodiniinae. In the buffaloes, the Entodinium are favored by urea and Diplodiniinae species by soybean meal.
Resumo:
The quantification of the available energy in the environment is important because it determines photosynthesis, evapotranspiration and, therefore, the final yield of crops. Instruments for measuring the energy balance are costly and indirect estimation alternatives are desirable. This study assessed the Deardorff's model performance during a cycle of a sugarcane crop in Piracicaba, State of São Paulo, Brazil, in comparison to the aerodynamic method. This mechanistic model simulates the energy fluxes (sensible, latent heat and net radiation) at three levels (atmosphere, canopy and soil) using only air temperature, relative humidity and wind speed measured at a reference level above the canopy, crop leaf area index, and some pre-calibrated parameters (canopy albedo, soil emissivity, atmospheric transmissivity and hydrological characteristics of the soil). The analysis was made for different time scales, insolation conditions and seasons (spring, summer and autumn). Analyzing all data of 15 minute intervals, the model presented good performance for net radiation simulation in different insolations and seasons. The latent heat flux in the atmosphere and the sensible heat flux in the atmosphere did not present differences in comparison to data from the aerodynamic method during the autumn. The sensible heat flux in the soil was poorly simulated by the model due to the poor performance of the soil water balance method. The Deardorff's model improved in general the flux simulations in comparison to the aerodynamic method when more insolation was available in the environment.
Resumo:
The n→π* absorption transition of formaldehyde in water is analyzed using combined and sequential classical Monte Carlo (MC) simulations and quantum mechanics (QM) calculations. MC simulations generate the liquid solute-solvent structures for subsequent QM calculations. Using time-dependent density functional theory in a localized set of gaussian basis functions (TD-DFT/6-311++G(d,p)) calculations are made on statistically relevant configurations to obtain the average solvatochromic shift. All results presented here use the electrostatic embedding of the solvent. The statistically converged average result obtained of 2300 cm-1 is compared to previous theoretical results available. Analysis is made of the effective dipole moment of the hydrogen-bonded shell and how it could be held responsible for the polarization of the solvent molecules in the outer solvation shells.
Resumo:
In this work we report on a comparison of some theoretical models usually used to fit the dependence on temperature of the fundamental energy gap of semiconductor materials. We used in our investigations the theoretical models of Viña, Pässler-p and Pässler-ρ to fit several sets of experimental data, available in the literature for the energy gap of GaAs in the temperature range from 12 to 974 K. Performing several fittings for different values of the upper limit of the analyzed temperature range (Tmax), we were able to follow in a systematic way the evolution of the fitting parameters up to the limit of high temperatures and make a comparison between the zero-point values obtained from the different models by extrapolating the linear dependence of the gaps at high T to T = 0 K and that determined by the dependence of the gap on isotope mass. Using experimental data measured by absorption spectroscopy, we observed the non-linear behavior of Eg(T) of GaAs for T > ΘD.
Resumo:
This work reports the photophysical properties (excitation and fluorescence spectra, fluorescence quantum yield, fluorescence lifetimes) of the poly(2,7-9,9'-dihexylfluorene-dyil) in dilute solutions of four solvents (toluene, tetrahydrofuran, chloroform and ethyl acetate) as well as the properties in solid state. Photoluminescence showed spectra characteristic of disordered α-backbone chain conformation. Simulation of the electronic absorption spectra of oligomers containing 1 to 11 mers showed that the critical conjugation length is between 6 and 7 mers. We also estimated the theoretical dipole moments which indicated that a coil conformation is formed with 8 repeating units per turn. We also showed that some energy transfer process appears in solid state which decreases the emission lifetime. Furthermore, based on luminescent response of the systems herein studied and electroluminescent behavior reported on literature, both photo and electroluminescence emissions arise from the same emissive units.
Resumo:
Iodine vapor is a very suitable substance to learn about molecular energy levels and transitions, and to introduce spectroscopic techniques. As a diatomic molecule its spectra are relatively simple and allow straightforward treatment of the data leading to the potential energy curves and to quantum mechanics concepts. The overtone bands, in the resonance Raman scattering, and the band progressions, in the electronic spectra, play an important role in the calculation of the Morse potential curves for the fundamental and excited electronic state. A weaker chemical bond in the electronic excited state, compared to the fundamental state, is evidenced by the increase in the equilibrium interatomic distance. The resonance Raman scattering of I2 is highlighted due to its importance for obtaining the anharmonicity constant in the fundamental electronic state.
Resumo:
A new tetraruthenated copper(II)-tetra(3,4-pyridyl)porphyrazine species, [CuTRPyPz]4+, has been synthesized and fully characterized by means of analytical, spectroscopic and electrochemical techniques. This À-conjugated system contrasts with the related meso-tetrapyridylporphyrins by exhibiting strong electronic interaction between the coordinated peripheral complexes and the central ring. Based on favorable À-stacking and electrostatic interactions, layer-by-layer assembled films were successfully generated from the appropriate combination of [CuTRPyPz]4+ with copper(II)-tetrasulfonated phtalocyanine, [CuTSPc]4-. Their conducting and electrocatalytic properties were investigated by means of impedance spectroscopy and rotating disc voltammetry, exhibiting metallic behavior near the Ru(III/II) redox potential, as well as enhanced catalytic activity for the oxidation of nitrite and sulphite ions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)