951 resultados para Electronic Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thinning the absorber layer is one of the possibilities envisaged to further decrease the production costs of Cu(In,Ga)Se2 (CIGSe) thin films solar cell technology. In the present study, the electronic transport in submicron CIGSe-based devices has been investigated and compared to that of standard devices. It is observed that when the absorber is around 0.5 μm-thick, tunnelling enhanced interface recombination dominates, which harms cells energy conversion efficiency. It is also shown that by varying either the properties of the Mo back contact or the characteristics of 3-stage growth processing, one can shift the dominating recombination mechanism from interface to space charge region and thereby improve the cells efficiency. Discussions on these experimental facts led to the conclusions that 3-stage process implies the formation of a CIGSe/CIGSe homo-interface, whose location as well as properties rule the device operation; its influence is enhanced in submicron CIGSe based solar cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to its extremely small thickness (0.35 nm), graphene is an intrinsic 2D nanomaterial. As in many other nanomaterials, its unique properties are derived from its exceptional dimensions. One of these properties is its linear dispersion equation that implies charge carriers with extraordinary high mobility. Therefore, the electronic properties of the material can lead to a big improvement in the performance of known electronic devices, or even result in novel devices for a post-silicon era.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a new model for characterizing the energetic behavior of grid connected PV inverters. The model has been obtained from a detailed study of main loss processes in small size PV inverters in the market. The main advantage of the used method is to obtain a model that comprises two antagonistic features, since both are simple, easy to compute and apply, and accurate. One of the main features of this model is how it handles the maximum power point tracking (MPPT) and the efficiency: in both parts the model uses the same approach and it is achieved by two resistive elements which simulate the losses inherent to each parameter. This makes this model easy to implement, compact and refined. The model presented here also includes other parameters, such as start threshold, standby consumption and islanding behavior. In order to validate the model, the values of all the parameters listed above have been obtained and adjusted using field measurements for several commercial inverters, and the behavior of the model applied to a particular inverter has been compared with real data under different working conditions, taken from a facility located in Madrid. The results show a good fit between the model values and the real data. As an example, the model has been implemented in PSPICE electronic simulator, and this approach has been used to teach grid-connected PV systems. The use of this model for the maintenance of working PV facilities is also shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research described here is supported by the award made by the RCUK Digital Economy program to the dot.rural Digital Economy Hub; award reference: EP/G066051/1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Postprint

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic nature of low-barrier hydrogen bonds (LBHBs) in enzymatic reactions is discussed based on combined low temperature neutron and x-ray diffraction experiments and on high level ab initio calculations by using the model substrate benzoylacetone. This molecule has a LBHB, as the intramolecular hydrogen bond is described by a double-well potential with a small barrier for hydrogen transfer. From an “atoms in molecules” analysis of the electron density, it is found that the hydrogen atom is stabilized by covalent bonds to both oxygens. Large atomic partial charges on the hydrogen-bonded atoms are found experimentally and theoretically. Therefore, the hydrogen bond gains stabilization from both covalency and from the normal electrostatic interactions found for long, weak hydrogen bonds. Based on comparisons with other systems having short-strong hydrogen bonds or LBHBs, it is proposed that all short-strong and LBHB systems possess similar electronic features of the hydrogen-bonded region, namely polar covalent bonds between the hydrogen atom and both heteroatoms in question.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, libraries have provided a modest amount of information about grants and funding opportunities to researchers in need of research funding. Ten years ago, the University of Washington (UW) Health Sciences Libraries and Information Center joined in a cooperative effort with the School of Medicine to develop a complete, library-based grant and funding service for health sciences researchers called the Research Funding Service. The library provided space, access to the library collection, equipment, and electronic resources, and the School of Medicine funded staff and operations. The range of services now includes individual consultation appointments, an extensive Web site, classes on funding database searching and writing grant applications, a discussion series that frequently hosts guest speakers, a monthly newsletter with funding opportunities of interest to the six health sciences schools, extensive files on funding sources, and referral services.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of two-pump and probe femtosecond experiments designed to follow the relaxation dynamics of the lowest excited state (S1) populated by different modes. In the first mode, a direct (S0 → S1) radiative excitation of the ground state is used. In the second mode, an indirect excitation is used where the S1 state is populated by the use of two femtosecond laser pulses with different colors and delay times between them. The first pulse excites the S0 → S1 transition whereas the second pulse excites the S1 → Sn transition. The nonradiative relaxation from the Sn state populates the lowest excited state. Our results suggest that the S1 state relaxes faster when populated nonradiatively from the Sn state than when pumped directly by the S0 → S1 excitation. Additionally, the Sn → S1 nonradiative relaxation time is found to change by varying the delay time between the two pump pulses. The observed dependence of the lowest excited state population as well as its dependence on the delay between the two pump pulses are found to fit a kinetic model in which the Sn state populates a different surface (called S′1) than the one being directly excited (S1). The possible involvement of the Ag type states, the J intermediate, and the conical intersection leading to the S0 or to the isomerization product (K intermediate) are discussed in the framework of the proposed model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure and spectrum of several models of the binuclear metal site in soluble CuA domains of cytochrome-c oxidase have been calculated by the use of an extended version of the complete neglect of differential overlap/spectroscopic method. The experimental spectra have two strong transitions of nearly equal intensity around 500 nm and a near-IR transition close to 800 nm. The model that best reproduces these features consists of a dimer of two blue (type 1) copper centers, in which each Cu atom replaces the missing imidazole on the other Cu atom. Thus, both Cu atoms have one cysteine sulfur atom and one imidazole nitrogen atom as ligands, and there are no bridging ligands but a direct Cu-Cu bond. According to the calculations, the two strong bands in the visible region originate from exciton coupling of the dipoles of the two copper monomers, and the near-IR band is a charge-transfer transition between the two Cu atoms. The known amino acid sequence has been used to construct a molecular model of the CuA site by the use of a template and energy minimization. In this model, the two ligand cysteine residues are in one turn of an alpha-helix, whereas one ligand histidine is in a loop following this helix and the other one is in a beta-strand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented. (C) 2016 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known about the developmental processes through which parenting factors may influence clinical depression among youth. This study investigated whether parenting influences the onset of clinical depression through the mediating mechanism of negative attributional style, particularly under conditions of high stress, in a community sample of children and adolescents (N = 289). Results supported a moderated mediation model in which low levels of observed parent positive regard and sensitivity to distress during a youth stressor task were indirectly associated with an increased likelihood of experiencing an episode of depression over an18 month period, through the mediating influence of youth negative attributional style, but only for youth who also experienced a high number of peer stressors. These findings elucidate mechanisms through which parenting may contribute to risk for depression during the transition into and across adolescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT The higher education systems throughout the continent of Africa are undergoing unprecedented challenges and are considered in crisis. African countries, including Ghana, all have in common ties to their colonial legacy whereby they are confronted with weak policies put in place by their colonizers. Having gained their independence, Africans should now take responsibility for the task of reforming their higher education system. To date, nothing substantial has been accomplished, with serious implications for weakening and damaging the structures of the foundation of their educational systems. This qualitative, single case study utilized a postcolonial theory-critical pedagogy framework, providing guidance for coming to grips with the mindset posed by Ghana's colonial heritage in the postcolonial era, especially in terms of its damaging effects on Ghana's higher education system. The study explores alternative pathways for secondary school students to transition to tertiary education--a problematic transition that currently hinders open access to all and equality in educational opportunity, resulting in a tremendous pool of discontinued students. This transitional problem is directly related to Ghana's crisis in higher education with far reaching consequences. The alternative pathway considered in this study is an adaptation of the U.S. community college model or an integration of its applicable aspects into the current structures of the higher education system already in place. In-depth interviews were conducted with 5 Ghanaian professors teaching at community colleges in the United States, 5 Ghanaian professors teaching at universities in Ghana, and 2 educational consultants from the Ghanaian Ministry of Education. Based on their perspectives of the current state of Ghanaian higher education, analyzed in terms of pedagogy, structure/infrastructure, and curriculum, the participants provided their perceptions of salient aspects of the U.S. community college model that would be applicable to Ghana's situation, along with other recommendations. Access to all, including equality of educational opportunity, was considered essential, followed by adaptability, affordability, practicality, and quality of curriculum content and delivery. Canada's successful adaptation of the U.S. model was also discussed. Findings can help guide consideration of alternative pathways to higher education in Ghana and Africa as a whole.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The explosive growth of the traffic in computer systems has made it clear that traditional control techniques are not adequate to provide the system users fast access to network resources and prevent unfair uses. In this paper, we present a reconfigurable digital hardware implementation of a specific neural model for intrusion detection. It uses a specific vector of characterization of the network packages (intrusion vector) which is starting from information obtained during the access intent. This vector will be treated by the system. Our approach is adaptative and to detecting these intrusions by using a complex artificial intelligence method known as multilayer perceptron. The implementation have been developed and tested into a reconfigurable hardware (FPGA) for embedded systems. Finally, the Intrusion detection system was tested in a real-world simulation to gauge its effectiveness and real-time response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the radial dependence of the energy deposition of the secondary electron generated by swift proton beams incident with energies T = 50 keV–5 MeV on poly(methylmethacrylate) (PMMA). Two different approaches have been used to model the electronic excitation spectrum of PMMA through its energy loss function (ELF), namely the extended-Drude ELF and the Mermin ELF. The singly differential cross section and the total cross section for ionization, as well as the average energy of the generated secondary electrons, show sizeable differences at T ⩽ 0.1 MeV when evaluated with these two ELF models. In order to know the radial distribution around the proton track of the energy deposited by the cascade of secondary electrons, a simulation has been performed that follows the motion of the electrons through the target taking into account both the inelastic interactions (via electronic ionizations and excitations as well as electron-phonon and electron trapping by polaron creation) and the elastic interactions. The radial distribution of the energy deposited by the secondary electrons around the proton track shows notable differences between the simulations performed with the extended-Drude ELF or the Mermin ELF, being the former more spread out (and, therefore, less peaked) than the latter. The highest intensity and sharpness of the deposited energy distributions takes place for proton beams incident with T ~ 0.1–1 MeV. We have also studied the influence in the radial distribution of deposited energy of using a full energy distribution of secondary electrons generated by proton impact or using a single value (namely, the average value of the distribution); our results show that differences between both simulations become important for proton energies larger than ~0.1 MeV. The results presented in this work have potential applications in materials science, as well as hadron therapy (due to the use of PMMA as a tissue phantom) in order to properly consider the generation of electrons by proton beams and their subsequent transport and energy deposition through the target in nanometric scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model Hamiltonians have been, and still are, a valuable tool for investigating the electronic structure of systems for which mean field theories work poorly. This review will concentrate on the application of Pariser–Parr–Pople (PPP) and Hubbard Hamiltonians to investigate some relevant properties of polycyclic aromatic hydrocarbons (PAH) and graphene. When presenting these two Hamiltonians we will resort to second quantisation which, although not the way chosen in its original proposal of the former, is much clearer. We will not attempt to be comprehensive, but rather our objective will be to try to provide the reader with information on what kinds of problems they will encounter and what tools they will need to solve them. One of the key issues concerning model Hamiltonians that will be treated in detail is the choice of model parameters. Although model Hamiltonians reduce the complexity of the original Hamiltonian, they cannot be solved in most cases exactly. So, we shall first consider the Hartree–Fock approximation, still the only tool for handling large systems, besides density functional theory (DFT) approaches. We proceed by discussing to what extent one may exactly solve model Hamiltonians and the Lanczos approach. We shall describe the configuration interaction (CI) method, a common technology in quantum chemistry but one rarely used to solve model Hamiltonians. In particular, we propose a variant of the Lanczos method, inspired by CI, that has the novelty of using as the seed of the Lanczos process a mean field (Hartree–Fock) determinant (the method will be named LCI). Two questions of interest related to model Hamiltonians will be discussed: (i) when including long-range interactions, how crucial is including in the Hamiltonian the electronic charge that compensates ion charges? (ii) Is it possible to reduce a Hamiltonian incorporating Coulomb interactions (PPP) to an 'effective' Hamiltonian including only on-site interactions (Hubbard)? The performance of CI will be checked on small molecules. The electronic structure of azulene and fused azulene will be used to illustrate several aspects of the method. As regards graphene, several questions will be considered: (i) paramagnetic versus antiferromagnetic solutions, (ii) forbidden gap versus dot size, (iii) graphene nano-ribbons, and (iv) optical properties.