995 resultados para Elastic waves
Resumo:
The effect of variable currents on internal solitary waves is described within the context of a variable coefficient Korteweg-de Vries (KdV) equation, and the approximate slowly varying, solitary-wave solution of this equation. The general theory which leads to the variable coefficient KdV equation is described; a derivation for the special case when the solitary wave and the current are aligned in the same direction is given in the Appendix. Using further simplifications and approximations, a number of analytical expressions are obtained for the variation in the solitary wave amplitude resulting from variable shear in the basic current or from when the basic current is a depth-independent flow which is a simple representation of a geostrophic current, tidal flow or inertial wave.
Resumo:
A crack intersecting an interface between two dissimilar materials may advance by either penetrating through the interface or deflecting into the interface. The competition between deflection and penetration can be assessed by comparison of two ratios: (i) the ratio of the energy release rates for interface cracking and crack penetration; and (ii) the ratio of interface to material fracture energies. Residual stresses caused by thermal expansion misfit can influence the energy release rates of both the deflected and penetrating crack. This paper analyses the role of residual stresses. The results reveal that expansion misfit can be profoundly important in systems with planar interfaces (such as layered materials, thin film structures, etc.), but generally can be expected to be of little significance in fiber composites. This paper corrects an earlier result for the ratio of the energy release rate for the doubly deflected crack to that for the penetrating crack in the absence of residual stress.
Resumo:
A new method for measuring the density, temperature and velocity of N2 gas flow by laser induced biacetyl phosphorescence is proposed. The characteristics of the laser induced phosphorescence of biacetyl mixed with N2 are investigated both in static gas and in one-dimensional flow along a pipe with constant cross section. The theoretical and experimental investigations show that the temperature and density of N2 gas flow could be measured by observing the phosphorescence lifetime and initial intensity of biacetyl triplet (3Au) respectively. The velocity could be measured by observing the time-of-flight of the phosphorescent gas after pulsed laser excitation. The prospect of this method is also discussed.
Resumo:
displacement thickness is lower than in the pure-gas case alone. The results indicate
Resumo:
Experiments concerning slightly slanting impact between a flat-ended rigid body and a flat-ended elastic cantilever column with a rectangular cross-section have been performed. The experimental results are compared with the theoretical ones. The small angle of incidence was measured by using an optical method. The impact process was studied by using a split disc for the rigid body, with the two halves bonded together and electrically insulated from each other. The disc and the column were parts of an electric circuit. Different contact states could be distinguished according to different voltage levels. Reasonably good agreement between theory and experiment was found. Thus, the impact duration has its minimum under perfectly axial impact as predicted by the theory. Also, the predicted process of alternating line and surface contact was observed. Furthermore, the existence of a small critical angle of incidence was verified. This critical angle of incidence divides the impact processes into two categories: (1) The rigid body and the column end come into surface contact before separation. (2) They separate without surface contact. Comparison of axial strains between theory and experiment shows good agreement.
Resumo:
This paper presents a general self-consistent theory of evolution and propagation of wavelets on the galactic disk. A simplified model for this theory, i. e. the thin transition-layer approximation is proposed.There are three types of solutions to the basic equation governing the evolution of wavelets on the disk: (ⅰ) normal propagating type; (ⅱ) swing type; (ⅲ) general evolving type. The results show that the first two types are applicable to a certain domain on the galactic disk and a certain region of the wave number of wavelets. The third is needed to join the other two types and to yield a coherent total picture of the wave motion. From the present theory, it can be seen that the well-known "swing theory" of the G-L sheet model holds only for a certain class of basic states of galaxies.
Resumo:
In this part of the present work, a simplified model—the thin transition layer theory is proposed. The comparison of this model with the G-L sheet model is made.
Resumo:
Microcracks can have a strong influence on the elastic and fracture mechanical properties of rocks if they are numerous, or if they are orientated in unfavourable directions in anisotropic rocks in particular. This paper presents results from a great number of mechanical tests on Stripa granite containing various amounts of microcracks. Variations in the microcrack density were obtained by shock-heating the rock at different temperatures in the range 100–600°C for 3 h.
Resumo:
The stability (evolutionarity) problem for a kind of MHD shock waves is discussed in this paper. That is to solve the interaction problem of MHD shock waves with (2-dimensional) oblique incident disturbances. In other words, the result of gasdynamic shocks is generalized to the case of MHD shocks. The previous conclusion of stability theory of MHD shock waves obtained from the solution of interaction problem of MHD shock wave with (one-dimensional) normal shock wave is that only fast and slow shocks are stable, and intermediate shocks are unstable. However, the results of this paper show that when the small disturbances are the Alfven waves a new stability condition which is related to the parameters in front of and behind the shock wave is derived. When the disturbances are entropy wave and fast and slow magneto acoustic waves the stability condition is related to the frequency of small disturbances. As the limiting ease, i. e. when a normal incident (reflection, refraction) is consid...更多ered, the fast and slow shocks are unstable. The results also show that the conclusion drawn by Kontorovich is invalid for the stability theory of shock waves.
Resumo:
The short-surface waves generated by a 3-D arbitrarily oscillating body floating onwater are discussed. In the far-field off the body, the phase and the amplitude functions ofthe radiated waves are determined by the ray method. An undetermined constant is includ-ed in the amplitude function. From the result of Ref. [1], the near-field boundary layersolution near the body waterline is obtained. The amplitude of this solution depends on thewhole wall shape of the body and the slope at the body waterline on the cross-sections per-pendicular to the waterline. By matching the far-field solution with the near-field bound-ary layer solution, the undetermined constant in the amplitude function of the far-fieldradiated waves is determined. For the special case of a half-submerged sphere which per-forms vertical oscillating motion, the result obtained in this paper is in agreement withthat of Ref. [ 2 ].
Resumo:
This paper deals with the interaction of solitary waves in a two-fluid system which consistsof two superimposed incompressible inviscid fluids with a free surface and a horizontal rigidbottom. Under the assumption of shallow water wave, we first derive the basic equationssuitable for the model considered, a generalized form of the Boussinesq equations, then usingthe PLK method and the reductive perturbation method, obtain the second-order approximatesolution for the head-on collision between two pairs of interface and surface solitary waves,and give their maximum amplitudes during the collision and the nonuniform phase shiftsafter the collision which lead to the distortion of the wave profiles.
Two-dimensional short surface-waves of an oscillating cylinder with arbitrary shape of cross-section
Resumo:
The 2-D short surface waves produced by a partially submerged cylinder which performsarbitrary oscillating motion are discussed. The uniformly valid solution which is applicableto all kinds of cylinder wall cases at waterline point is obtained. It is pointed out that thesolution obtained by Holford[J] for the vertical oscillating motion of a cylinder is incomplete.The reason why his solution cannot go over to that for the case of vertical cylinder wall atwaterline point is also pointed out.
Resumo:
Stress and strain distributions and crack opening displacement characteristics of short cracks have been studied in single edge notch bend and centre cracked panel specimens using elastic–plastic finite element analyses incorporating both a non strain hardening and a power law hardening behaviour. J contour integral solutions to describe stress strain conditions at crack tips for short cracks differ from those for long cracks. The analyses show that (i) short cracks can propagate at stress levels lower than those required for long cracks and (ii) a two-parameter description of crack tip fields is necessary for crack propagation.
Resumo:
This paper deals with in detail the permanence of the spiral structure of galaxies andthe characters of waser mechanism. A simplified model of galaxy is adopted. Variousdynamical characters of density waves are studied using numerical calculation method. Theresults verify very well the switch character f waser and the tunnel effect of density wavesat the potential barrier of corotation circle as is shown in a previous work of the author.