985 resultados para Elastic shear buckling
Resumo:
This paper presents the details of an experimental study on punching shear strength and behaviour of reinforced concrete corner column connections in flat slabs; a quasi-empirical method is proposed for computing the punching shear strength. The method has also been extended for punching shear strength prediction at interior and edge column connections. The test results compare better with the strengths predicted by the proposed method than those by Ingvarson, Zaglool and Pollet available in the literature. Further, the experimental strengths of interior, edge and corner column connections have been compared with the strengths predicted by the proposed method and the two codes of practice, viz. ACI and BS code, to demonstrate the usefulness of the method.
Resumo:
This paper gives the details of the studies undertaken to examine the strength and behaviour of fibre-reinforced concrete corner column connections in flat slabs. Tests have been conducted on 16 specimens with varying reinforcement ratio, moment/shear ratio (load eccentricity) and volume fraction of fibres. A quasi-empirical method has been proposed for computing the punching shear strength. The method has also been extended to fibre-reinforced concrete interior column connections, tests on which are available in the literature. The test results have been compared with the strength predicted by the proposed method for corner column as well as interior column connections and a satisfactory agreement noticed.
Resumo:
A primary flexure problem defined by Kirchhoff theory of plates in bending is considered. Significance of auxiliary function introduced earlier in the in-plane displacements in resolving Poisson-Kirchhoffs boundary conditions paradox is reexamined with reference to reported sixth order shear deformation theories, in particular, Reissner's theory and Hencky's theory. Sixth order modified Kirchhoff's theory is extended here to include shear deformations in the analysis. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents nonlinear finite element analysis of adhesively bonded joints considering the elastoviscoplastic constitutive model of the adhesive material and the finite rotation of the joint. Though the adherends have been assumed to be linearly elastic, the yielding of the adhesive is represented by a pressure sensitive modified von Mises yield function. The stress-strain relation of the adhesive is represented by the Ramberg-Osgood relation. Geometric nonlinearity due to finite rotation in the joint is accounted for using the Green-Lagrange strain tensor and the second Piola-Kirchhoff stress tensor in a total Lagrangian formulation. Critical time steps have been calculated based on the eigenvalues of the transition matrices of the viscoplastic model of the adhesive. Stability of the viscoplastic solution and time dependent behaviour of the joints are examined. A parametric study has been carried out with particular reference to peel and shear stress along the interface. Critical zones for failure of joints have been identified. The study is of significance in the design of lap joints as well as on the characterization of adhesive strength. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
In this work, the effect of lattice orientation on the fields prevailing near a notch tip is investigated pertaining to various constraint levels in FCC single crystals. A modified boundary layer formulation is employed and numerical solutions under mode I, plane strain conditions are generated by assuming an elastic-perfectly plastic FCC single crystal. The analysis is carried out corresponding to different lattice orientations with respect to the notch line. It is found that the near-tip deformation field, especially the development of kink or slip shear bands is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the notch tip are also strongly influenced by the level of T-stress. The present results clearly establish that ductile single crystal fracture geometries would progressively lose crack tip constraint as the T-stress becomes more negative irrespective of lattice orientation. Also, the near-tip field for a range of constraint levels can be characterized by two-parameters such as K-T or J-Q as in isotropic plastic solids.
Resumo:
A new beam element is developed to study the thermoelastic behavior of functionally graded beam structures. The element is based on the first-order shear deformation theory and it accounts for varying elastic and thermal properties along its thickness. The exact solution of static part of the governing differential equations is used to construct interpolating polynomials for the element formulation. Consequently, the stiffness matrix has super-convergent property and the element is free of shear locking. Both exponential and power-law variations of material property distribution are used to examine different stress variations. Static, free vibration and wave propagation problems are considered to highlight the behavioral difference of functionally graded material beam with pure metal or pure ceramic beams. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The slow flow of granular materials is often marked by the existence of narrow shear layers, adjacent to large regions that suffer little or no deformation. This behaviour, in the regime where shear stress is generated primarily by the frictional interactions between grains, has so far eluded theoretical description. In this paper, we present a rigid-plastic frictional Cosserat model that captures thin shear layers by incorporating a microscopic length scale. We treat the granular medium as a Cosserat continuum, which allows the existence of localised couple stresses and, therefore, the possibility of an asymmetric stress tensor. In addition, the local rotation is an independent field variable and is not necessarily equal to the vorticity. The angular momentum balance, which is implicitly satisfied for a classical continuum, must now be solved in conjunction with the linear momentum balances. We extend the critical state model, used in soil plasticity, for a Cosserat continuum and obtain predictions for flow in plane and cylindrical Couette devices. The velocity profile predicted by our model is in qualitative agreement with available experimental data. In addition, our model can predict scaling laws for the shear layer thickness as a function of the Couette gap, which must be verified in future experiments. Most significantly, our model can determine the velocity field in viscometric flows, which classical plasticity-based model cannot.
Resumo:
A flow-induced instability in a tube with flexible walls is studied experimentally. Tubes of diameter 0.8 and 1.2 mm are cast in polydimethylsiloxane (PDMS) polymer gels, and the catalyst concentration in these gels is varied to obtain shear modulus in the range 17–550 kPa. A pressure drop between the inlet and outlet of the tube is used to drive fluid flow, and the friction factor $f$ is measured as a function of the Reynolds number $Re$. From these measurements, it is found that the laminar flow becomes unstable, and there is a transition to a more complicated flow profile, for Reynolds numbers as low as 500 for the softest gels used here. The nature of the $f$–$Re$ curves is also qualitatively different from that in the flow past rigid tubes; in contrast to the discontinuous increase in the friction factor at transition in a rigid tube, it is found that there is a continuous increase in the friction factor from the laminar value of $16\ensuremath{/} Re$ in a flexible tube. The onset of transition is also detected by a dye-stream method, where a stream of dye is injected into the centre of the tube. It is found that there is a continuous increase of the amplitude of perturbations at the onset of transition in a flexible tube, in contrast to the abrupt disruption of the dye stream at transition in a rigid tube. There are oscillations in the wall of the tube at the onset of transition, which is detected from the laser scattering off the walls of the tube. This indicates that the coupling between the fluid stresses and the elastic stresses in the wall results in an instability of the laminar flow.
Resumo:
Elasto-plastic response of bulk metallic glasses (BMGs) follows closely the response of granular materials through pressure dependent (or normal stress) yield locus and shear stress induced material dilatation. On a micro-structural level, material dilatation is responsible for stress softening and formation of localized shear band, however its influence on the macro-scale flow and deformation is largely unknown. In this work, we systematically analyze the effect of material dilatation on the gross indentation response of Zr-based BMG via finite element simulation. The strengthening/softening effect on the load-depth response and corresponding stress-strain profiles are presented in light of differences in elastic-plastic regimes under common indenters. Through comparison with existing experimental results, we draw conclusions regarding selection of suitable dilatation parameters for accurately predicting the gross response of BMGs
Resumo:
Internal haemorrhage, often leading to cardio-vascular arrest happens to be one of the prime sources of high fatality rates in mammals. We propose a simplistic model of fluid flow in our attempt to specify the location of the haemorrhagic spot, which, if located accurately, could possibly be operated leading to an instant cure. The model we employ for the purpose is basically fluid mechanical in origin and consists of a viscous fluid, pumped by a periodic force and flowing through an elastic tube. The analogy is with that of blood, pumped from the heart and flowing through an artery or vein. Our results, aided by graphical illustrations, match reasonably well with experimental observations.
Resumo:
In this paper, the effects of T -stress on steady, dynamic crack growth in an elastic-plastic material are examined using a modified boundary layer formulation. The analyses are carried out under mode I, plane strain conditions by employing a special finite element procedure based on moving crack tip coordinates. The material is assumed to obey the J (2) flow theory of plasticity with isotropic power law hardening. The results show that the crack opening profile as well as the opening stress at a finite distance from the tip are strongly affected by the magnitude and sign of the T -stress at any given crack speed. Further, it is found that the fracture toughness predicted by the analyses enhances significantly with negative T -stress for both ductile and cleavage mode of crack growth.
Resumo:
We examine the shear-thinning behaviour of a two dimensional yield stress bearing monolayer of sorbitan tristearate at air/water interface. The flow curve consists of a linear region at low shear stresses/shear rates, followed by a stress plateau at higher values. The velocity profile obtained from particle imaging velocimetry indicates that shear banding occurs, showing coexistence of the fluidized region near the rotor and solid region with vanishing shear-rate away from the rotor. In the fluidized region, the velocity profile, which is linear at low shear rates, becomes exponential at the onset of shear-thinning, followed by a time varying velocity profile in the plateau region. At low values of constant applied shear rates, the viscosity of the film increases with time, thus showing aging behaviour like in soft glassy three-dimensional (3D) systems. Further, at the low values of the applied stress in the yield stress regime, the shear-rate fluctuations in time show both positive and negative values, similar to that observed in sheared 3D jammed systems. By carrying out a statistical analysis of these shear-rate fluctuations, we estimate the effective temperature of the soft glassy monolayer using the Galavatti-Cohen steady state fluctuation relation.