854 resultados para Earth construction - Thermal properties - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les nanoparticules (NPs) de polymère ont montré des résultats prometteurs pour leur utilisation comme système de transport de médicaments pour une libération contrôlée du médicament, ainsi que pour du ciblage. La biodisponibilité des médicaments administrés oralement pourrait être limitée par un processus de sécrétion intestinale, qui pourrait par la suite être concilié par la glycoprotéine P (P-gp). La dispersion de la Famotidine (modèle de médicament) à l’intérieur des nanoparticules (NPs) pegylées a été évaluée afin d’augmenter la biodisponibilité avec du polyéthylène glycol (PEG), qui est connu comme un inhibiteur de P-gp. L’hypothèse de cette étude est que l’encapsulation de la Famotidine (un substrat de P-gp) à l’intérieur des NPs préparées à partir de PEG-g-PLA pourrait inhiber la fonction P-gp. La première partie de cette étude avait pour but de synthétiser quatre copolymères de PEG greffés sur un acide polylactide (PLA) et sur un squelette de polymère (PLA-g-PEG), avec des ratios de 1% et 5% (ratio molaire de PEG vs acide lactique monomère) de soit 750, soit 2000 Da de masse moléculaire. Ces polymères ont été employés afin de préparer des NPs chargés de Famotidine qui possède une faible perméabilité et une solubilité aqueuse relativement basse. Les NPs préparées ont été analysées pour leur principaux paramètres physicochimiques tels que la taille et la distribution de la taille, la charge de surface (Potentiel Zeta), la morphologie, l’efficacité d’encapsulation, le pourcentage résiduel en alcool polyvinylique (PVA) adsorbé à la surface des NPs, les propriétés thermiques, la structure cristalline et la libération du médicament. De même, les formules de NPs ont été testées in vitro sur des cellules CaCo-2 afin dʼévaluer la perméabilité bidirectionnelle de la Famotidine. Généralement, les NPs préparées à partir de polymères greffés PLA-g-5%PEG ont montré une augmentation de la perméabilité du médicament, ce par l’inhibition de l’efflux de P-gp de la Famotidine dans le modèle CaCo-2 in vitro. Les résultats ont montré une baisse significative de la sécrétion de la Famotidine de la membrane basolatéral à apical lorsque la Famotidine était encapsulée dans des NPs préparées à partir de greffes de 5% PEG de 750 ou 2000 Da, de même que pour d’autres combinaisons de mélanges physiques contenant du PEG5%. La deuxième partie de cette étude est à propos de ces NPs chargées qui démontrent des résultats prometteurs en termes de perméabilité et d’inhibition d’efflux de P-gp, et qui ont été choises pour développer une forme orale solide. La granulation sèche a été employée pour densifier les NPs, afin de développer des comprimés des deux formules sélectionnées de NPs. Les comprimés à base de NPs ont démontré un temps de désintégration rapide (moins d’une minute) et une libération similaire à la Famotidine trouvée sur le marché. Les résultats de l’étude du transport de comprimés à base de NPs étaient cohérents avec les résultats des formules de NPs en termes d’inhibition de P-gp, ce qui explique pourquoi le processus de fabrication du comprimé n’a pas eu d’effet sur les NPs. Mis ensemble, ces résultats montrent que l’encapsulation dans une NP de polymère pegylé pourrait être une stratégie prometteuse pour l’amélioration de la biodisponibilité des substrats de P-gp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis aims to develop new toughened systems for epoxy resin via physical and chemical modifications. Initially the synthesis of DGEBA was carried out and the properties compared with that of the commercial sample. Subsequently the modifier resins to be employed were synthesized. The synthesized resin were characterized by spectroscopic method (FTIR and H NMR), epoxide equivalent and gel permeation chromatography. Chemical modification involves the incorporation of thermoset resins such a phenolics, epoxy novolacs, cardanol epoxides and unsaturated polyester into the epoxy resin by reactive belnding. The mechanical and thermal properties of the blends were studied. In the physical modification route, elastomers, maleated elastomers and functional elastomers were dispersed as micro-sized rubber phase into the continuous epoxy phase by a solution blending technique as against the conventional mechanical blending technique. The effect of matrix toughening on the properties of glass reinforced composites and the effect of fillers on the properties of commercial epoxy resin were also investigated. The blends were characterized by thermo gravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, scanning electron microscopy and mechanical property measurements. Among the thermoset blends, substantial toughening was observed in the case of epoxy phenolic novolacs especially epoxy para cresol novolac (ECN). In the case of elastomer blending , the toughest blends were obtained in the case of maleic anhydride grafted NBR. Among functional elastomers the best results were obtained with CTBN. Studies on filled and glass reinforced composites employing modified epoxy as matrix revealed an overall improvement in mechanical properties

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis provides an overall review and introduction to amorphous semiconductors, followed by a brief discussion on the important structural models proposed for chalcogenide glasses and their electrical, optional and thermal properties. It also gives a brief description of the Physics of thin films, ion implantation and Photothermal Deflection Spectroscopy. A brief description of the experimental setup of a photothermal deflection spectrometer and the details of the preparation and optical characterization of the thin film samples. It deals with the employment of the subgap optional absorption measurement by PDS to characterize the defects, amorphization and annealing behavior in silicon implanted with B+ ions and the profiles of ion range and vacancy distribution obtained by the TRIM simulation. It reports the results of all absorption measurements by PDS in nitrogen implanted thin film samples of Ge-Se and As-Se systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Short fiber reinforced thermoplastics have generated much interest these days since fibrous materials tend to increase both mechanical and thermal properties, such as tensile strength, flexural strength, flexural modulus, heat deflection temperature, creep resistance, and some times impact strength of thermoplastics. If the matrix and reinforcement are both based on polymers the composite are recyclable. The rheological behavior of recyclable composites based on nylon fiber reinforced polypropylene (PP) is reported in this paper. The rheological behavior was evaluated both using a capillary rheometer and a torque rheometer. The study showed that the composite became pseudoplastic with fiber content and hence fiber addition did not affect processing adversely at higher shear rates. The torque rheometer data resembled that obtained from the capillary rheometer. The energy of mixing and activation energy of mixing also did not show much variation from that of PP alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Material synthesizing and characterization has been one of the major areas of scientific research for the past few decades. Various techniques have been suggested for the preparation and characterization of thin films and bulk samples according to the industrial and scientific applications. Material characterization implies the determination of the electrical, magnetic, optical or thermal properties of the material under study. Though it is possible to study all these properties of a material, we concentrate on the thermal and optical properties of certain polymers. The thermal properties are detennined using photothermal beam deflection technique and the optical properties are obtained from various spectroscopic analyses. In addition, thermal properties of a class of semiconducting compounds, copper delafossites, arc determined by photoacoustic technique.Photothermal technique is one of the most powerful tools for non-destructive characterization of materials. This forms a broad class of technique, which includes laser calorimetry, pyroelectric technique, photoacollstics, photothermal radiometric technique, photothermal beam deflection technique etc. However, the choice of a suitable technique depends upon the nature of sample and its environment, purpose of measurement, nature of light source used etc. The polynler samples under the present investigation are thermally thin and optically transparent at the excitation (pump beam) wavelength. Photothermal beam deflection technique is advantageous in that it can be used for the detennination of thermal diffusivity of samples irrespective of them being thermally thick or thennally thin and optically opaque or optically transparent. Hence of all the abovementioned techniques, photothemlal beam deflection technique is employed for the successful determination of thermal diffusivity of these polymer samples. However, the semi conducting samples studied are themlally thick and optically opaque and therefore, a much simpler photoacoustic technique is used for the thermal characterization.The production of polymer thin film samples has gained considerable attention for the past few years. Different techniques like plasma polymerization, electron bombardment, ultra violet irradiation and thermal evaporation can be used for the preparation of polymer thin films from their respective monomers. Among these, plasma polymerization or glow discharge polymerization has been widely lIsed for polymer thin fi Im preparation. At the earlier stages of the discovery, the plasma polymerization technique was not treated as a standard method for preparation of polymers. This method gained importance only when they were used to make special coatings on metals and began to be recognized as a technique for synthesizing polymers. Thc well-recognized concept of conventional polymerization is based on molecular processcs by which thc size of the molecule increases and rearrangemcnt of atoms within a molecule seldom occurs. However, polymer formation in plasma is recognized as an atomic process in contrast to the above molecular process. These films are pinhole free, highly branched and cross linked, heat resistant, exceptionally dielectric etc. The optical properties like the direct and indirect bandgaps, refractive indices etc of certain plasma polymerized thin films prepared are determined from the UV -VIS-NIR absorption and transmission spectra. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer. The thermal diffusivity has been measured using the photothermal beam deflection technique as stated earlier. This technique measures the refractive index gradient established in the sample surface and in the adjacent coupling medium, by passing another optical beam (probe beam) through this region and hence the name probe beam deflection. The deflection is detected using a position sensitive detector and its output is fed to a lock-in-amplifIer from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the deflection signal is suitably analyzed for determining the thermal diffusivity.Another class of compounds under the present investigation is copper delafossites. These samples in the form of pellets are thermally thick and optically opaque. Thermal diffusivity of such semiconductors is investigated using the photoacoustic technique, which measures the pressure change using an elcctret microphone. The output of the microphone is fed to a lock-in-amplificr to obtain the amplitude and phase from which the thermal properties are obtained. The variation in thermal diffusivity with composition is studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the investigation is to develop new high performance adhesive systems based on neoprene-phenolic blends. Initially the effect of addition of all possible ingredients like fillers, adhesion promoters, curing agents and their optimum compositions to neoprene solution is investigated. The phenolic resin used is a copolymer of phenol-cardanolformaldehyde prepared in the laboratory. The optimum ratio between phenol and cardanol that gives the maximum bond strength in metal-metal, rubber-rubber and rubber-metal specimens has been identified. Further the ratio between total phenols and formaldehyde is also optimised. The above adhesive system is further modified by the addition of epoxidized phenolic novolacs. For this purpose, phenolic novolac resins are prepared in different stoichiometric ratios and are subsequently epoxidized. The effectiveness of the adhesive for bonding different metal and rubber substrates is another part of the study. To study the ageing behaviour, different bonded specimens are exposed to high temperature, hot water and salt water and adhesive properties have been evaluated. The synthesized resins have been characterized by FTIR , HNMR spectroscopy. The molecular weights of the resins have been obtained by GPC. Thermogravimetric analysis and differential scanning calorimetry are used to study the thermal properties. The fractured surface analysis is studied by scanning electron microscopy. The study has brought to light the influence of phenol/ formaldehyde stoichiometric ratio, addition of cardanol (a renewable resource), adhesion promoters and suitability of the adhesive for different substrates and the age resistance of adhesive joints among other things.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work focuses on the modification of the commonly used thermoplastics, polypropylene and polystyrene using nanosilica preparcd from a cheap source of sodium silicate. Melt compounding technique has been used for nanocomposite preparation as it is simple and suited to injection moulding. Nanosilica in a polymer matrix provide significant enhancement in strength, stiffness and impact strength. Incorporation of silica particles in a polymer also improves its thennal stability. To achieve better dispersion of fillers in polymer matrices the mixing was done at different shear rates. The enhancement in material properties indicates that at higher shear rates there is greater interaction between particles and the matrix and it depends on filler concentration and type of polymer used. N anosilica is a useful filler in thennoplastic polymers and has been applied in automotive applications, electronic appliances and consumer goods.This thesis is divided into six chapters. General introduction to the topic is described in chapter 1. Salient features of polymer nanocomposites, their synthesis, properties and applications are presented. A review of relevant literature and the scope and objectives are also mentioned in this chapter.The materials used and the vanous experimental method and techniques employed in the study are described in chapter 2. Preparation of nanocomposites by melt blending using Thenno Haake Rheocord, preparation of samples, evaluation of mechanical and thennal properties using UTM, Impact testing and characterization using DMA, TGA and DSC and morphology by SEM are described.The preparation of nanosilica from a laboratory scale to a pilot plant scale is described in chapter 3. Generation of surface modified silica, evaluation of kinetic parameters of the synthesis reaction, scale up of the reactor and modeling of the reactor are also dealt with in this chapter.The modification of the commodity thennoplastic, Polypropylene using nanosilica is described in chapter 4. Preparation of PP/silica nanocomposites, evaluation of mechanical properties, thermal and crystallization characteristics, water absorption and ageing resistance studies are also presented.The modification of Polystyrene using synthesized nanosilica IS described in chapter 5. The method of preparation of PS/silica nanocomposites, evaluation of mechanical properties (static and dynamic), thermal properties melt flow characteristics using Haake Rheocord, water absorption and ageing resistance of these nanocomposites are studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study describes the preparation of Vinyl acetate-Butyl acrylate copolymer lattices of varying compositions and solid contents by semicontinuous emulsion polymerization method. This copolymer lattices were used as binder to develop a new surface coating formulation. The properties of this surface coating were improved by using nano TiO2 colloidal sol as a pigment. Antimicrobial activity of surface coatings was improved by the addition of carboxymethyl chitosan as biocide. Uniformly dispersed tyre crumb was used to give a mat finish to the coating. The mechanical properties adhesive properties, thermal properties etc. of the coatings are presented in thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodegradable polymers have opened an emerging area of great interest because they are the ultimate solution for the disposal problems of synthetic polymers used for short time applications in the environmental and biomedical field. The biodegradable polymers available until recently have a number of limitations in terms of strength and dimensional stability. Most of them have processing problems and are also very expensive. Recent developments in biodegradable polymers show that monomers and polymers obtained from renewable resources are important owing to their inherent biodegradability, biocompatibility and easy availability. The present study is, therefore, mostly concemed with the utilization of renewable resources by effecting chemical modification/copolymerization on existing synthetic polymers/natural polymers for introducing better biodegradability and material properties.The thesis describes multiple approaches in the design of new biodegradable polymers: (1) Chemical modification of an existing nonbiodegradable polymer, polyethylene, by anchoring monosaccharides after functionalization to introduce biodegradability. (2) Copolymerization of an existing biodegradable polymer, polylactide, with suitable monomers and/or polymers to tailor their properties to suit the emerging requirements such as (2a) graft copolymerization of lactide onto chitosan to get controlled solvation and biodegradability and (2b) copolymerization of polylactide with cycloaliphatic amide segments to improve upon the thermal properties and processability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this introduction part, importance has been given to the elastomeric properties of polyurethanes. Emphasis has been laid to this property based on microphase separation and how this could be modified by modifying the segment lengths, as well as the structure of the segments. Implication was also made on the mechanical and thermal properties of these copolymers based on various analytical methods usually used for characterization of polymers. A brief overview of the challenges faced by the polyurethane chemistry was also done, pointing to the fact that though polyurethane industry is more than 75 years old, still a lot of questions remain unanswered, that too mostly in the synthesis of polyurethanes. A major challenge in this industry is the utilization of more environmental friendly “Green Chemistry Routes” for the synthesis of polyurethanes which are devoid of any isocyanates or harsh solvents.The research work in this thesis was focused to develop non-isocyanate green chemical process for polyurethanes and also self-organize the resultant novel polymers into nano-materials. The thesis was focused on the following three major aspects:(i) Design and development of novel melt transurethane process for polyurethanes under non-isocyanate and solvent free melt condition. (ii) Solvent induced self-organization of the novel cycloaliphatic polyurethanes prepared by the melt transurethane process into microporous templates and nano-sized polymeric hexagons and spheres. (iii) Novel polyurethane-oligophenylenevinylene random block copolymer nano-materials and their photoluminescence properties. The second chapter of the thesis gives an elaborate discussion on the “Novel Melt Transurethane Process ” for the synthesis of polyurethanes under non-isocyanate and solvent free melt condition. The polycondensation reaction was carried out between equimolar amounts of a di-urethane monomer and a diol in the presence of a catalyst under melt condition to produce polyurethanes followed by the removal of low boiling alcohol from equilibrium. The polymers synthesized through this green chemical route were found to be soluble (devoid of any cross links), thermally stable and free from any isocyanate entities. The polymerization reaction was confirmed by various analytical techniques with specific references to the extent of reaction which is the main watchful point for any successful polymerization reaction. The mechanistic aspects of the reaction were another point of consideration for the novel polymerization route which was successfully dealt with by performing various model reactions. Since this route was successful enough in synthesizing polyurethanes with novel structures, they were employed for the solvent induced self-organization which is an important area of research in the polymer world in the present scenario. Chapter three mesmerizes the reader with multitudes of morphologies depending upon the chemical backbone structure of the polyurethane as well as on the nature and amount of various solvents employed for the self-organization tactics. The rationale towards these morphologies-“Hydrogen Bonding ” have been systematically probed by various techniques. These polyurethanes were then tagged with luminescent 0ligo(phenylene vinylene) units and the effects of these OPV blocks on the morphology of the polyurethanes were analyzed in chapter four. These blocks have resulted in the formation of novel “Blue Luminescent Balls” which could find various applications in optoelectronic devices as well as delivery vehicles.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of short fibers as reinforcing fillers in rubber composites is on an increasing trend. They are popular due to the possibility of obtaining anisotropic properties, ease of processing and economy. In the preparation of these composites short fibers are incorporated on two roll mixing mills or in internal mixers. This is a high energy intensive time consuming process. This calls for developing less energy intensive and less time consuming processes for incorporation and distribution of short fibers in the rubber matrix. One method for this is to incorporate fibers in the latex stage. The present study is primarily to optimize the preparation of short fiber- natural rubber composite by latex stage compounding and to evaluate the resulting composites in terms of mechanical, dynamic mechanical and thermal properties. A synthetic fiber (Nylon) and a natural fiber (Coir) are used to evaluate the advantages of the processing through latex stage. To extract the full reinforcing potential of the coir fibers the macro fibers are converted to micro fibers through chemical and mechanical means. The thesis is presented in 7 chapters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid polymer networks (HPNs) based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The epoxy resins used were epoxidised phenolic novolac (EPN), epoxidised cresol novolac (ECN) and diglycidyl ether of bisphenol A (DGEBA). Epoxy novolacs were prepared by glycidylation of the novolacs using epichlorohydrin. The physical, mechanical, and thermal properties of the cured blends were compared with those of the control resin. Epoxy resins show good miscibility and compatibility with the UPR resin on blending and the co-cured resin showed substantial improvement in the toughness and impact resistance. Considerable enhancement of tensile strength and toughness are noticed at very low loading of EPN. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and diVerential scanning calorimetry (DSC) were employed to study the thermal properties of the toughened resin. The EPN/ UPR blends showed substantial improvement in thermal stability as evident from TGA and damping data. The fracture behaviour was corroborated by scanning electron microscopy (SEM). The performance of EPN is found to be superior to other epoxy resins

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unsaturated polyester resins (UPRs) are used widely in the fiber-reinforced plastics (FRPs) industry. These resins have the disadvantages of brittleness and poor resistance to crack propagation. In this study, hybrid polymer networks (HPNs) based on UPR and epoxidized phenolic novolacs (EPNs) were prepared by reactive blending. A HPN is composed of a backbone polymer containing two types of reactive groups that can take part in crosslinking reactions via different mechanisms. EPNs were prepared by glycidylation of novolacs using epichlorohydrin. The novolacs had varying phenol: formaldehyde ratios. Blends of unsaturated polyester with EPN were then prepared. The physical properties of the cured blends were compared with those of the control resin. EPN shows good miscibility and compatibility with the resin and improves the toughness and impact resistance substantially. Considerable enhancement of tensile strength is also noticed at about 5% by weight of epoxidized novolac resin. TGA, DMA, and DSC were used to study the thermal properties of the toughened resin and the fracture behavior was studied using SEM. The blends are also found to have better thermal stability. Blending with EPN can be a useful and cost-effective technique for modification of UPR