940 resultados para Early Warning and Nowcasting Approaches for Water Quality in Riverine and Coastal Systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentrations of major anions and cations, nitrogen and phosphorus, dissolved and particulate trace elements, and organic pollutants were determined for the middle and lower reaches of the Yangtze River (Changjiang) from below the Three Gorges Dam (TGD) to the mouth at Shanghai in November 2006. The concentration of dissolved inorganic phosphate (DIP) was constant at a low level of 6-8 mu gP/L, but the concentration of nitrate (NO3-) approximately doubled downstream and was closely correlated with K+. This translated to a daily load of well over 1000 It of dissolved inorganic nitrogen (DIN) at Datong. The average concentrations of dissolved Pb (0.078 +/- 0.023 mu g/L), Cd (0.024 +/- 0.009 mu g/L), Cr(0.57 +/- 0.09 mu g/L), Cu (1.9 +/- 0.7 mu g/L), and Ni (0.50 +/- 0.49 mu g/L) were comparable with those in other major world rivers, while As (3.3 +/- 1.3 mu g/L) and Zn (1.5 +/- 0.6 mu g/L) were higher by factors of 5.5 and 2.5, respectively. The trace element contents of suspended particles of As (31 +/- 28 mu g/g), Pb (83 +/- 34 mu g/g), and Ni (52 +/- 16 mu g/g) were close to maximum concentrations recommended for rivers by the European Community (EC). The average concentrations of Cd (2.6 +/- 1.6 mu g/g), Cr (185 +/- 102 mu g/g), Cu (115 +/- 106 mu g/g), and Zn (500 +/- 300 mu g/g) exceeded the EC standards by a factor of two, and Hg (4.4 +/- 4.7 mu g/g) by a factor of 4 to 5. Locally occurring peak concentrations exceed these values up to fourfold, among them the notorious elements As, Hg, and Tl. All dissolved and particulate trace element concentrations were higher than estimates made twenty years ago [Zhang, J., Geochemistry of trace metals from Chinese river/estuary systems: an overview. Estuar Coast Shelf Sci 1995; 41: 631-658.]. The enormous loads of anthropogenic pollutants disposed to the river were diluted by the large water discharge of the Yangtze even during the lowest flow resulting in the relatively low concentration levels of trace elements and organic pollutants observed. We estimated loads of e.g. As, Pb and Ni to the East China Sea to be about 4600 kg As d(-1), 3000 kg Pb d(-1), and 2000 kg Ni d(-1). About 6000 t d(-1) of dissolved organic carbon (DOC) was delivered into the sea at the time of our cruise. We tested for 236 organic pollutants, and only the most infamous were found to be barely above detection limits. We estimated that the load of chlorinated compounds, aromatic hydrocarbons, phenols, and PAHs were between 500 and 3500 kg d(-1). We also detected eight herbicides entering the estuary with loads of 5-350 kg d(-1). The pollutant load, even when at low concentrations, are considerable and pose an increasing threat to the health of the East China Sea ecosystem. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During 28-29, September 2005, water was drawn from Hanjiang River and Houguan Lake to the Yangzi River via Sanjiao Lake and Nantaizi Lake in Wuhan in order to provide favorable conditions for ecosystem restoration. To evaluate the feasibility and validity of drawing water as a means of ecosystem restoration, zooplankton populations were studied 3 times (before, immediately after finishing and a month after drawing water) at seven locations from 27 Sept. 2005 to 2 Nov. 2005. Water quality in the lakes was mostly improved and zooplankton species richness decreased as soon as drawing water had finished but increased a month after drawing water. Zooplankton density and biomass was reduced in the lakes by drawing water but was increased at the entrance to Sanjiao Lake because of landform geometry change. Before drawing water, most species in Sanjiao Lake e.g., Brachionus sp. and Keratella sp. were tolerant of contamination. After drawing water oligotrophic-prone species such as Lecane ludwigii and Gastropus stylifer emerged. We conclude that drawing water could be important for improving water quality and favour ecosystem restoration. Dilution of nutrient concentrations may be an important role in the effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blooms of cyanobacteria, or blue-greens, are known to produce chemicals, such as microcystins, which can be toxic to aquatic and terrestrial organisms. Although previous studies have examined the fate of microcystins in freshwater lakes, primary elimination pathways and factors affecting degradation and loss have not been fully explained. The goal of the present study was to explore sources of algal toxins and investigate the distribution and biodegradation of microcystins in water and sediment through laboratory and field analyses. Water and sediment samples were collected monthly from several locations in Lake Taihu from February 2005 to January 2006. Samples were analyzed for the presence of microcystin. Water and sediment were also used in laboratory studies to determine microcystin degradation rates by spiking environmental samples with known concentrations of the chemical and observing concentration changes over time. Some water samples were found to efficiently degrade microcystins. Microcystin concentrations dropped faster in water collected immediately above lake sediment (overlying water). Degradation in sediments was higher than in water. Based on spatial distribution analyses of microcystin in Lake Taihu, higher concentrations (relative to water concentrations) of the chemical were found in lake sediments. These data suggest that sediments play a critical role in microcystin degradation in aquatic systems. The relatively low levels of microcystins found in the environment are most likely due to bacterial biodegradation. Sediments play a crucial role as a source (to the water column) of bio-degrading bacteria and as a carbon-rich environment for bacteria to proliferate and metabolize microcystin and other biogenic toxins produced by cyanobacteria. These, and other, data provide important information that may be applied to management strategies for improvement of water quality in lakes, reservoirs and other water bodies. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oceanographic conditions and transport processes are often critical factors that affect the early growth, survival and recruitment of marine fishes. Sagittal otoliths were analysed to determine age and early growth for 381 jack mackerel (Trachurus japonicus) juveniles from Sagami Bay on the Pacific coast of Japan. Two separate hatching periods ( December and February-March) were identified. They originated from the spawning grounds in the East China Sea. Early growth and developmental rates of December-hatching fish were lower than those for February-March-hatching fish. It is likely that these differences were determined in the Kuroshio Current during transport from the spawning grounds to Sagami Bay, and the lower December water temperatures in the bay. Origin and hatch dates of juveniles in Sagami Bay were in contrast to previous research on Fukawa Bay, where April-or-later-hatching fish from spawning grounds in the coastal waters of southern Japan constituted about half of the juvenile population. Management of these two jack mackerel stocks needs to consider these differences in hatch date composition and spawning origins, as these differences could affect early growth and subsequent mortality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing recognition that protozoa is very useful in monitoring and evaluating water ecological healthy and quality. In order to study the relationship between structure and function of protozoan communities and water qualities, six sampling stations were set on Lake Donghu, a hypereutrophic subtropical Chinese lake. Microbial communities and protists sampling from the six stations was conducted by PFU (Polyurethane foam unit) method. Species number (S), diversity index (DI), percentage of phytomastigophra, community pollution value (CPV), community similarity and heterophy index (HI) were mensurated. The measured indicators of water quality included total phosphorus (TP), dissolved oxygen (DO), Chemical oxygen demand (COD), NH4 (+), NO2 (-) and NO3-. Every month water samples from stations I, II, III, IV were chemically analyzed for a whole year, Among the chemically analyzed stations, station I was the most heavily polluted, station II was the next, stations III and IV had similar pollution degrees. The variable tendencies of COD, TP, NH3, NO2-, NO3-, and DO during the year was approximately coincident among the six stations. Analysis from the community parameters showed that the pollution of station 0 was much more serious than others, and station V was the most slight. Of the community parameters, CPV and HI were sensitive in reflecting the variables of the water quality. Community similarity index was also sensitive in dividing water qualities and the water quality status of different stations could be correctly classified by the cluster analysis. DI could reflect the tendency of water quality gradient, species number and percentage of Phytomastigophora was not obvious in indicating the water quality gradient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the research is to study the seasonal succession of protozoa community and the effect of water quality on the protozoa community to characterize biochemical processes occurring at a eutrophic Lake Donghu, a large shallow lake in Wuhan City, China. Samples of protozoa communities were obtained monthly at three stations by PFU (polyurethane foam unit) method over a year. Synchronously, water samples also were taken from the stations for the water chemical quality analysis. Six major variables were examined in a principal component analysis (PCA), which indicate the fast changes of water quality in this station I and less within-year variation and a comparatively stable water quality in stations II and III. The community data were analyzed using multivariate techniques, and we show that clusters are rather mixed and poorly separated, suggesting that the community structure is changing gradually, giving a slight merging of clusters form the summer to the autumn and the autumn to the winter. Canonical correspondence analysis (CCA) was used to infer the relationship between water quality variables and phytoplankton community structure, which changed substantially over the survey period. From the analysis of cluster and CCA, coupled by community pollution value (CPV), it is concluded that the key factors driving the change in protozoa community composition in Lake Donghu was water qualities rather than seasons. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method of comparing data on protozoan communities with chemical parameters is presented. Using data from an extensive survey of the River Hanjiang in China, each species of protozoa has been given a species pollution value (SPV) related to its occurrence in waters with different degrees of pollution. A comprehensive chemical index is calculated for each site based on water quality standards for eight chemical parameters. The index is calculated from the relationship between the observed levels of each chemical at a site, compared with the limits of the drinking water quality standards of the People's Republic of China. From the distribution of each species at sites with differing chemical index values, a SPV is calculated. The SPV for each species is obtained by summing the logarithmic value of 10 times the chemical pollution divided by the number of chemical parameters, then divided by the stations where the species occurs. The community pollution value (CPV), which is the average SPVs of all protozoa at a site, is used to evaluate water quality. The CPV has been shown to have a close correlation with the degree of water pollution. It is not necessary for all the protozoa in a sample to have SPVs listed in this paper, provided at least 56% of the protozoa in a sample have an SPV value, the CPV will be applicable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chlorophyll fluorescence kinetics of marine red alga Grateloupia turutunt Yamada, green alga Ulva pertusa Kjellm and brown alga Laminaria japonica Aresch during natural sustained dehydration were monitored and investigated. The pulse amplified modulation (PAM) system was used to analyze the distinct fluorescence parameters during thallus dehydration. Results proved that the fluorescence kinetics of different seaweed all showed three patterns of transformation with sustained water loss. These were: 1) peak kinetic pattern (at the early stage of dehydration fluorescence enhanced and quenched subsequently, representing a normal physiological state). 2) plateau kinetic pattern (with sustained water loss fluorescence enhanced continuously but quenching became slower, finally reaching its maximum). 3) Platform kinetic pattern (fluorescence fell and the shape of kinetic curve was similar to plateau kinetic pattern). A critical water content (CWC) could be found and defined as the percentage of water content just prior to the fluorescence drop and to be a significant physiological index for evaluation of plant drought tolerance. Once thallus water content became lower than this value the normal peak pattern can not be recovered even through rehydration, indicating an irreversible damage to the thylakoid membrane. The CWC value corresponding to different marine species were varied and negatively correlated with their desiccation tolerance, for example. Laminaria japonica had the highest CWC value (around 90%) and the lowest dehydration tolerance of the three. In addition, a fluorescence "burst" was found only in red algae during rehydration. The different fluorescence parameters F-o, F-v and F-v, F-m were measured and compared during water loss. Both F-o and F-v increased in the first stage of dehydration but F-v/F-m. kept almost constant. So the immediate response of in vivo chlorophyll fluorescence to dehydration was an enhancement. Later with sustained dehydration F-o increased continuously while F-v decreased and tended to become smaller and smaller. The major changes in fluorescence (including fluorescence drop during dehydration and the burst during rehydration) were all attributed to the change in F-o instead of F-v This significance of F-o indicates that it is necessary to do more research on F-o as well as on its relationship with the state of thylakoid membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through an examination of global climate change models combined with hydrological data on deteriorating water quality in the Middle East and North Africa (MENA), we elucidate the ways in which the MENA countries are vulnerable to climate-induced impacts on water resources. Adaptive governance strategies, however, remain a low priority for political leaderships in the MENA region. To date, most MENA governments have concentrated the bulk of their resources on large-scale supply side projects such as desalination, dam construction, inter-basin water transfers, tapping fossil groundwater aquifers, and importing virtual water. Because managing water demand, improving the efficiency of water use, and promoting conservation will be key ingredients in responding to climate-induced impacts on the water sector, we analyze the political, economic, and institutional drivers that have shaped governance responses. While the scholarly literature emphasizes the importance of social capital to adaptive governance, we find that many political leaders and water experts in the MENA rarely engage societal actors in considering water risks. We conclude that the key capacities for adaptive governance to water scarcity in MENA are underdeveloped. © 2010 Springer Science+Business Media B.V.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of in situ measurements is essential in the validation and evaluation of the algorithms that provide coastal water quality data products from ocean colour satellite remote sensing. Over the past decade, various types of ocean colour algorithms have been developed to deal with the optical complexity of coastal waters. Yet there is a lack of a comprehensive intercomparison due to the availability of quality checked in situ databases. The CoastColour Round Robin (CCRR) project, funded by the European Space Agency (ESA), was designed to bring together three reference data sets using these to test algorithms and to assess their accuracy for retrieving water quality parameters. This paper provides a detailed description of these reference data sets, which include the Medium Resolution Imaging Spectrometer (MERIS) level 2 match-ups, in situ reflectance measurements, and synthetic data generated by a radiative transfer model (HydroLight). These data sets, representing mainly coastal waters, are available from doi:10.1594/PANGAEA.841950. The data sets mainly consist of 6484 marine reflectance (either multispectral or hyperspectral) associated with various geometrical (sensor viewing and solar angles) and sky conditions and water constituents: total suspended matter (TSM) and chlorophyll a (CHL) concentrations, and the absorption of coloured dissolved organic matter (CDOM). Inherent optical properties are also provided in the simulated data sets (5000 simulations) and from 3054 match-up locations. The distributions of reflectance at selected MERIS bands and band ratios, CHL and TSM as a function of reflectance, from the three data sets are compared. Match-up and in situ sites where deviations occur are identified. The distributions of the three reflectance data sets are also compared to the simulated and in situ reflectances used previously by the International Ocean Colour Coordinating Group (IOCCG, 2006) for algorithm testing, showing a clear extension of the CCRR data which covers more turbid waters.