990 resultados para ELECTROCHEMICAL GENERATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of macrobicyclic dinickel(II) complexes Ni2L1,2 B](ClO4)(4) (1-6), where L-1,L-2 are polyaza macrobicyclic binucleating ligands, and B is a N,N-donor heterocyclic base (viz. 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen)) are synthesized and characterized. The redox, catalytic, DNA binding and DNA cleavage properties were studied. They exhibit two irreversible waves in the cathodic region around E-pc = -0.95 V and E-pa = -0.85 V vs. Ag/Ag+ in CH3CN-0.1 M TBAP, respectively. The first order rate constants for the hydrolysis of 4-nitrophenylphosphate to 4-nitrophenolate by the dinickel(II) complexes 1-6 are in the range from 3.36 x 10(-5) to 10.83 x 10(-5) Ms-1. The complexes 3 and 6 show good binding propensity to calf thymus DNA giving binding constant values (K-b) in the range from 3.08 x 10(5) to 5.37 x 10(5) M-1. The binding site sizes and viscosity data suggest the DNA intercalative and/or groove binding nature of the complexes. The complexes display significant hydrolytic cleavage of supercoiled pBR322DNA at pH 7.2 and 37 degrees C. The hydrolytic cleavage of DNA by the complexes is supported by the evidence from free radical quenching and T4 ligase ligation. The pseudo Michaelis-Menten kinetic parameters k(cat) = 5.44 x 10(-2) h(-1) and K-M = 6.23 x 10(-3) M for complex 3 were obtained. Complex 3 also shows an enormous enhancement of the cleavage rate, of 1.5 x 10(6), in comparison to the uncatalysed hydrolysis rate (k = 3.6 x 10(-8) h(-1)) of ds-DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An all-digital technique is proposed for generating an accurate delay irrespective of the inaccuracies of a controllable delay line. A subsampling technique-based delay measurement unit (DMU) capable of measuring delays accurately for the full period range is used as the feedback element to build accurate fractional period delays based on input digital control bits. The proposed delay generation system periodically measures and corrects the error and maintains it at the minimum value without requiring any special calibration phase. Up to 40x improvement in accuracy is demonstrated for a commercial programmable delay generator chip. The time-precision trade-off feature of the DMU is utilized to reduce the locking time. Loop dynamics are adjusted to stabilize the delay after the minimum error is achieved, thus avoiding additional jitter. Measurement results from a high-end oscilloscope also validate the effectiveness of the proposed system in improving accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate 30 times enhanced flux of relativistic electrons by a silicon nanowire coated target excited by 30 fs, 800 nm laser pulses at an intensity of 3 x 10(18) W cm(-2). A measurement of the megaampere electron current via induced megagauss magnetic field supports the enhancement feature observed in the electron energy spectrum. The relativistic electrons generated at the front of nanowire coated surface are shown to travel efficiently over 500 mu m in the insulating substrate. The enhanced hot electron temperature is explained using a simple model and is supported by recent simulations. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4729010]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of the standard model with a fourth generation, we explore the allowed mass spectra in the fourth-generation quark and lepton sectors as functions of the Higgs mass. Using the constraints from unitarity and oblique parameters, we show that a heavy Higgs allows large mass splittings in these sectors, opening up new decay channels involving W emission. Assuming that the hints for a light Higgs do not yet constitute an evidence, we work in a scenario where a heavy Higgs is viable. A Higgs heavier than similar to 800 GeV would in fact necessitate either a heavy quark decay channel t' -> b'W/b' -> t'W or a heavy lepton decay channel tau' -> nu'W as long as the mixing between the third and fourth generations is small. This mixing tends to suppress the mass splittings and hence the W-emission channels. The possibility of the W-emission channel could substantially change the search strategies of fourth-generation fermions at the LHC and impact the currently reported mass limits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study deals with tailoring of the surface morphology, microstructure, and electrochemical properties of Sn thin films deposited by magnetron sputtering with different deposition rates. Scanning electron microscopy and atomic force microscopy are used to characterize the film surface morphology. Electrochemical properties of Sn thin film are measured and compared by cyclic voltammetry and charge-discharge cycle data at a constant current density. Sn thin film fabricated with a higher deposition rate exhibited an initial discharge capacity of 798 mAh g(-1) but reduced to 94 mAh g(-1) at 30th cycle. Film deposited with lower deposition rate delivered 770 mAh g(-1) during 1st cycle with improved capacity retention of 521 mAh g(-1) on 30th cycle. Comparison of electrochemical performances of these films has revealed important distinctions, which are associated with the surface morphology and hence on rate of deposition. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ electrochemical polymerization of aniline in a Langmuir trough under applied surface pressure assists in the preferential orientation of polyaniline (PANI) in planar polaronic structure. Exfoliated graphene oxide (EGO) spread on water surface is used to bring anilinium cations present in the subphase to air-water interface through electrostatic interactions. Subsequent electrochemical polymerization of aniline under applied surface pressure in the Schaefer mode results in EGO/PANT composite with PANT in planar polaronic form. The orientation of PANI is confirmed by electrochemical and Raman spectroscopic studies. This technique opens up possibilities of 2-D polymerization at the air-water interface. Electrochemical sensing of hydrogen peroxide is used to differentiate the activity of planar and coiled forms of PANI toward electrocatalytic reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poorly crystalline mesoporous MnO2, which is suitable for supercapacitor studies, is synthesized from neutral KMnO4 aqueous solution by hydrothermal route. But it requires a high temperature (180 A degrees C) and also a long reaction time (24 h). Addition of a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123), which is generally used as a soft template for the synthesis of nano-structured porous materials, reduces the hydrothermal temperature to 140 A degrees C and also reaction time to 2 h. When the reaction time is increased, the product morphology changes from nanoparticles to nanorods with a concomitant decrease in BET surface area. Also, the product tends to attain crystallinity. The electrochemical capacitance properties of MnO2 synthesized under varied hydrothermal conditions are studied in 0.1 M Na2SO4 electrolyte. A specific capacitance of 193 F g(-1) is obtained for the mesoporous MnO2 sample consisting of nanoparticle and nanorod mixed morphology synthesized in 6 h using P123 at 140 A degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here a multiple-nitrile based lithium-salt liquid electrolyte. The ionic conductivity of poly (propyl ether imine) (abbreviated as PETIM) lithium salt dendrimer liquid electrolyte was observed to be a function of dendrimer generation number, n=0 (monomer)-3. While the highest room temperature ionic conductivity value (similar to 10(-1) Sm-1) was recorded for the bis-2cyanoethyl ether monomer (i.e. zeroth generation; G(0)-CN), conductivity decreased progressively to lower values (similar to 10(-3) Sm-1) with increase in generation number (G(1)-CN -> G(3)-CN). The G(0)-CN and higher dendrimer generations showed high thermal stability (approximate to 150 to 200 degrees C), low moisture sensitivity and tunable viscosity (similar to 10(-2) (G(0)-CN) to 3 (G(3)-CN) Pa s). The linker ether group was found to be crucial for ion transport and also eliminated a large number of detrimental features, chiefly moisture sensitivity, chemical instability associated typically with prevalent molecular liquid solvents. Based on the combination of several beneficial physicochemical properties, we presently envisage that the PETIM dendrimers especially the G(0)-CN electrolytes hold promise as electrolytes in electrochemical devices such as lithium-ion batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Zn-CeO 2 composite coatings through electrodeposition technique were successfully fabricated on mild steel substrate. As a comparison pure zinc coating was also prepared. The concentration of CeO 2 nanoparticles was varied in the electrolytic bath and the composites were electrodeposited both in the presence and absence of cetyltriammonium bromide (CTAB). The performance of the CeO 2 nanoparticles towards the deposition, crystal structure, texture, surface morphology and electrochemical corrosion behavior was studied. For characterizations of the electrodeposits, the techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) were used. Both the additives ceria and surfactant polarize the reduction processes and thus influence the deposition process, surface nature and the electrochemical properties. The electrochemical experiments like potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies carried out in 3.5 wt. NaCl solution explicit higher corrosion resistance by CeO 2 incorporated coating in the presence of surfactant. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present work describes the characterization of commercially available ZnO and its electrochemical investigation of dopamine in the presence of ascorbic acid. ZnO was characterized by powder XRD, UV-visible absorption, fluorescence, infrared spectroscopy and scanning electron microscopy. The carbon paste electrode was modified with ZnO and ZnO/polyglycine for further electrochemical investigation of dopamine. The modified electrode shows good electrocatalytic activity towards the detection of dopamine with a reduction in overpotential. The ZnO/polyglycine modified carbon paste electrode (CPE/ZnO/Pgl) shows excellent electrochemical enhancement of peak currents for both dopamine (DA) and ascorbic acid (AA) and for simultaneous detection of DA in the presence of high concentrations of AA with 0.214 V oxidation peak potential differences between them at pH 7.4. From the scan rate variation and concentration, the oxidation of DA and AA was found to be adsorption-controlled. The use of CPE/ZnO/Pgl is demonstrated for the detection of DA in blood serum and injection samples. This journal is © The Royal Society of Chemistry 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conducting polymer microstructures for enzymatic biosensors are developed by a facile electrochemical route. Horseradish peroxide (HRP)-entrapped polypyrrole (PPy) films with bowl-shaped microstructures are developed on stainless steel (SS 304) substrates by a single-step process. Potentiodynamic scanning/cyclic voltammetry is used for generation of PPy microstructures using electrogenerated oxygen bubbles stabilized by zwitterionic surfactant/buffer N-2-hydroxyethylpiperazine N-2-ethanesulfonic acid as soft templates. Scanning electron microscopic images reveal the bowl-shaped structures surrounded by cauliflower-like fractal PPy films and globular nanostructures. Raman spectroscopy reveals the oxidized nature of the film. Sensing properties of PPy-HRP films for hydrogen peroxide (H2O2) are demonstrated. Electrochemical characterization of the sensor films is done by linear sweep voltammetry (LSV) and amperometry. LSV results indicated the reduction of H2O2 and linearity in response of the sensing film. The amperometric biosensor has a performance comparable to those in the literature with advantages of hard-template free synthesis procedure and a satisfactory sensitivity value of 12.8 mu A/(cm(2) . mM) in the range of 1-10 mM H2O2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we have carried out thin film characterization of poly(3,4-propylenedioxythiophene)-sultone (PProDOT-S), a derivative of electrochromic poly(3,4-propylenedioxythiophene) (PProDOT). PProDOT-S was deposited onto transparent conducting oxide coated glass substrates by solution casting method. Single wavelength spectrophotometry is used to monitor the switching speed and contrast ratio at maximum wavelength (lambda (max)). The percentage transmittance at the lambda (max) of the neutral polymer is monitored as a function of time when the polymer film is repeatedly switched. This experiment gives a quantitative measure of the speed with which a film is able to switch between the two states i.e. the coloured and the bleached states. PProDOT-S films were switched at a voltage of 1 center dot 9 V with a switching speed of 2 s at lambda (max) of 565 nm and showed a contrast of similar to 37%. Cyclic voltammetry performed at different scan rates have shown the characteristic anodic and cathodic peaks. The structural investigations of PProDOT-S films by IR spectra were in good agreement with previously reported results. Raman spectra of PProDOT-S showed a strong Raman peak at 1509 cm (-aEuro parts per thousand 1) and a weak peak at 1410 cm (-aEuro parts per thousand 1) due to the C = C asymmetric and symmetric stretching vibrations of thiophene rings. The morphological investigations carried out by using scanning electron microscope (SEM) of polymer films have shown that these polymers are found to be arranged in dense packed clusters with non-uniform distribution having an average width and length of 95 nm and 160 nm, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of an exfoliated graphite (EG) electrode in the square wave voltammetric detection of bisphenol A (a model phenolic pollutant) in water, whereby the phenolic electrode fouling challenge is mitigated, is described. The oxidation peak of BPA was observed at about 0.45 V in phosphate buffer solution at pH 10. The current response exhibited a linear relationship with the concentration over a range from 1.56 mu M-50 mu M. The detection limit was calculated to be 0.76 mu M. The EG electrode surface was renewed after each measurement with excellent reproducibility. A real sample application was also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anatase Ag-TiO2 microwires with high sensitivity and photocatalytic activity were synthesized via polyol synthesis route followed by a simple surface modification and chemical reduction approach for attachment of silver. The superior performance of the Ag-TiO2 composite microwires is attributed to improved surface reactivity, mass transport and catalytic property as a result of wiring the TiO2 surface with Ag nanoparticles. Compared to the TiO2 microwires, Ag-TiO2 microwires exhibited three times higher sensitivity in the detection of cationic dye such as methylene blue. Photocatalytic degradation efficiency was also found to be significantly enhanced at constant illumination protocols and observation times. The improved performance is attributed to the formation of a Schottky barrier between TiO2 and Ag nanoparticles leading to a fast transport of photogenerated electrons to the Ag nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphology of nanocrystalline Co3O4 synthesized through microwave irradiation of a solution of a cobalt complex is found to depend reproducibly on the conditions of synthesis and, in particular, on the composition of the solvent used. Despite the rapidity of the process, oriented aggregation occurs under certain conditions, depending on solvent composition. Annealing the oriented samples leads to microstructures with significant porosity, rendering the material suitable as electrodes for electrochemical capacitors. Electrochemical analysis of the oxide samples was carried out in 0.1M Na2SO4 electrolyte vs. Ag/AgCl electrode. A stable specific capacitance of 221 F/g was measured for a meso-porous sample displaying oriented aggregation. Stability of these oxide materials were checked for longer charge-discharge cycling. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.002210jes] All rights reserved.