881 resultados para Diversification in industry


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigated the potential application of mid-infrared spectroscopy (MIR 4,000–900 cm−1) for the determination of milk coagulation properties (MCP), titratable acidity (TA), and pH in Brown Swiss milk samples (n = 1,064). Because MCP directly influence the efficiency of the cheese-making process, there is strong industrial interest in developing a rapid method for their assessment. Currently, the determination of MCP involves time-consuming laboratory-based measurements, and it is not feasible to carry out these measurements on the large numbers of milk samples associated with milk recording programs. Mid-infrared spectroscopy is an objective and nondestructive technique providing rapid real-time analysis of food compositional and quality parameters. Analysis of milk rennet coagulation time (RCT, min), curd firmness (a30, mm), TA (SH°/50 mL; SH° = Soxhlet-Henkel degree), and pH was carried out, and MIR data were recorded over the spectral range of 4,000 to 900 cm−1. Models were developed by partial least squares regression using untreated and pretreated spectra. The MCP, TA, and pH prediction models were improved by using the combined spectral ranges of 1,600 to 900 cm−1, 3,040 to 1,700 cm−1, and 4,000 to 3,470 cm−1. The root mean square errors of cross-validation for the developed models were 2.36 min (RCT, range 24.9 min), 6.86 mm (a30, range 58 mm), 0.25 SH°/50 mL (TA, range 3.58 SH°/50 mL), and 0.07 (pH, range 1.15). The most successfully predicted attributes were TA, RCT, and pH. The model for the prediction of TA provided approximate prediction (R2 = 0.66), whereas the predictive models developed for RCT and pH could discriminate between high and low values (R2 = 0.59 to 0.62). It was concluded that, although the models require further development to improve their accuracy before their application in industry, MIR spectroscopy has potential application for the assessment of RCT, TA, and pH during routine milk analysis in the dairy industry. The implementation of such models could be a means of improving MCP through phenotypic-based selection programs and to amend milk payment systems to incorporate MCP into their payment criteria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intelligent viewing systems are required if efficient and productive teleoperation is to be applied to dynamic manufacturing environments. These systems must automatically provide remote views to an operator which assist in the completion of the task. This assistance increases the productivity of the teleoperation task if the robot controller is responsive to the unpredictable dynamic evolution of the workcell. Behavioral controllers can be utilized to give reactive 'intelligence.' The inherent complex structure of current systems, however, places considerable time overheads on any redesign of the emergent behavior. In industry, where the remote environment and task frequently change, this continual redesign process becomes inefficient. We introduce a novel behavioral controller, based on an 'ego-behavior' architecture, to command an active camera (a camera mounted on a robot) within a remote workcell. Using this ego-behavioral architecture the responses from individual behaviors are rapidly combined to produce an 'intelligent' responsive viewing system. The architecture is single-layered, each behavior being autonomous with no explicit knowledge of the number, description or activity of other behaviors present (if any). This lack of imposed structure decreases the development time as it allows each behavior to be designed and tested independently before insertion into the architecture. The fusion mechanism for the behaviors provides the ability for each behavior to compete and/or co-operate with other behaviors for full or partial control of the viewing active camera. Each behavior continually reassesses this degree of competition or co-operation by measuring its own success in controlling the active camera against pre-defined constraints. The ego-behavioral architecture is demonstrated through simulation and experimentation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose adding a temporal dimension to stakeholder management theory, and assess the implications thereof for firm-level competitive advantage. We argue that a firm’s competitive advantage fundamentally depends on its capacity for stakeholder management related, transformational adaptation over time. Our new temporal stakeholder management approach builds upon insights from both the resource-based view (RBV) in strategic management and institutional theory. Stakeholder agendas and their relative salience to the firm evolve over time, a phenomenon well understood in the literature, and requiring what we call level 1 adaptation. However, the dominant direction of stakeholder pressures can also change, namely, from supporting resource heterogeneity at the firm level to fostering industry homogeneity, and vice versa. When dominant stakeholder pressures shift from supporting heterogeneity towards stimulating homogeneity in industry, the firm must engage in level 2 or transformational adaptation. Stakeholders typically provide valuable resources to the firm in an early stage. Without these resources, which foster heterogeneity (in line with RBV thinking), the firm would not exist. At a later stage, stakeholders also contribute to inter-firm homogeneity via isomorphism pressures (in line with institutional theory thinking). Adding a temporal dimension to stakeholder management theory has far reaching implications for this theory’s practical relevance to senior level management in business.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Royal palm tree peroxidase (RPTP) is a very stable enzyme in regards to acidity, temperature, H(2)O(2), and organic solvents. Thus, RPTP is a promising candidate for developing H(2)O(2)-sensitive biosensors for diverse applications in industry and analytical chemistry. RPTP belongs to the family of class III secretory plant peroxidases, which include horseradish peroxidase isozyme C, soybean and peanut peroxidases. Here we report the X-ray structure of native RPTP isolated from royal palm tree (Roystonea regia) refined to a resolution of 1.85 angstrom. RPTP has the same overall folding pattern of the plant peroxidase superfamily, and it contains one heme group and two calcium-binding sites in similar locations. The three-dimensional structure of RPTP was solved for a hydroperoxide complex state, and it revealed a bound 2-(N-morpholino) ethanesulfonic acid molecule (MES) positioned at a putative substrate-binding secondary site. Nine N-glycosylation sites are clearly defined in the RPTP electron-density maps, revealing for the first time conformations of the glycan chains of this highly glycosylated enzyme. Furthermore, statistical coupling analysis (SCA) of the plant peroxidase superfamily was performed. This sequence-based method identified a set of evolutionarily conserved sites that mapped to regions surrounding the heme prosthetic group. The SCA matrix also predicted a set of energetically coupled residues that are involved in the maintenance of the structural folding of plant peroxidases. The combination of crystallographic data and SCA analysis provides information about the key structural elements that could contribute to explaining the unique stability of RPTP. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The desire to conquer markets through advanced product design and trendy business strategies are still predominant approaches in industry today. In fact, product development has acquired an ever more central role in the strategic planning of companies, and it has extended its influence to R&D funding levels as well. It is not surprising that many national R&D project frameworks within the EU today are dominated by product development topics, leaving production engineering, robotics, and systems on the sidelines. The reasons may be many but, unfortunately, the link between product development and the production processes they cater for are seldom treated in depth. The issue dealt with in this article relates to how product development is applied in order to attain the required production quality levels a company may desire, as well as how one may counter assembly defects and deviations through quantifiable design approaches. It is recognized that product verifications (tests, inspections, etc.) are necessary, but the application of these tactics often result in lead-time extensions and increased costs. Modular architectures improve this by simplifying the verification of the assembled product at module level. Furthermore, since Design for Assembly (DFA) has shown the possibility to identify defective assemblies, it may be possible to detect potential assembly defects already in the product and module design phase. The intention of this paper is to discuss and describe the link between verifications of modular architectures, defects and design for assembly. The paper is based on literature and case studies; tables and diagrams are included with the intention of increasing understanding of the relation between poor designs, defects and product verifications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A global review of the stratigraphical and geographical distribution of Tyloplecta reveals that the genus ranges in age from Kungurian to Changhsingian (Middle to Late Permian). Tyloplecta first evolved in South China in the Kungurian (late Early Permian). The genus went through its first diversification in the Guadalupian, suffered a major extinction at the end of the Guadalupian, and re-diversified in the Wuchiapingian. T. yangtzeensis persisted into the Changhsingian as the only survivor of the genus involved in the end-Permian mass extinction. Palaeogeographically, South China is not only the centre of origin for the genus but also an area of diversification and evolution. In addition to South China, Tyloplecta has also been recorded from the Far East Russia, Japan, central Thailand, Laos, Cambodia, Qiangtang Terrane of Tibet, Salt Range, Iran, Armenia, Hungary, Yugoslavia, and Slovenia. This geographic spread suggests that Tyloplecta was primarily restricted to the Palaeotethys and is indicative of warm-water palaeoequatorial conditions. Its presence in some of the northeast Asian terranes (e.g., parts of Japan and Far East Russia) and in the Salt Range (Pakistan) and central and north Iran (part of the Cimmerian microcontinents) demonstrate that the genus invaded the middle palaeolatitudinal regions in both hemispheres during the late Middle Permian in response to increased shallow marine biotic communications between Cathaysia in the eastern Palaeotethys and southern Angaraland, and between Cathaysia and Peri-Gondwanaland. The invasion of Tyloplecta (and some other taxa) into the southern shore waters of Angaraland may be explained by assuming ocean surface current connections and close palaeogeographical proximities between the South China, Sino-Korea and Bureya blocks. In comparison, the invasion of Tyloplecta into the Peri-Gondwanaland region is more likely a result of reduced palaeogeographical distance between South China and Peri-Gondwanaland and the appearance of the Cimmerian microcontinents as migratory stepping stones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigates the extent to which the technical and social contexts of organizations independently affect levels of workplace trust. We argue that, in an organizational context, trust is not just a relationship between an individual subject (the truster) and an object (the trustee) but is subject to effects from the conditions of the work relationship itself. We describe the organizational context as comprising both a technical system of production (where work gets done through the specification of tasks) and a social system of work (where problems of effort, compliance, conformity and motivation are managed). We analyse the relationship between trust and these two aspects of workplace context (technical and social systems). We also operationalize this in terms of differences between industries,  occupational composition and human resource management practices. The model is tested using data drawn from the 1995 Australian Workplace Industrial Relations Survey. The results confirm that differences in industry, occupational composition and HRM practices all impact on levels of workplace trust. We review these results in terms of their implications for future research into the problem of analysing variation in trust at both the workplace and individual levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a simulation optimization of a real scheduling problem in industry, simulated annealing is introduced for this purpose.  Investigation is performed into the practicality of using simulated annealing to produce high quality schedules.  Results on the solution quality and computational effort show the inherent properties of the simulated annealing.  It is shown that when using this method, high quality schedules can be produced within reasonable time contraints.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper looks at intervention programmes to improve the representation of female students in computing education and the computer industry, A multiple case study methodology was used to look at major intervention programmes conducted in Australia. One aspect of the research focused on the programme champions; those women from the computing industry, those working within government organisations and those in academia who instigated the programmes. The success of these intervention programmes appears to have been highly dependent upon not only the design of the programme but on the involvement of these strong individuals who were passionate and worked tirelessly to ensure the programme's success. This paper provides an opportunity for the voices of these women to be heard. It describes the champions' own initial involvement with computing which frequently motivated and inspired them to conduct such programmes. The research found that when these types of intervention programmes were conducted by academic staff the work was undervalued compared to when the activities were conducted by staff in industry or in government. The academic environment was often not supportive of academics who conducted intervention programmes for female students.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computer modeling and simulation provide a foundation upon which industrial processes and systems can be transformed and innovation dramatically accelerated. Computer modeling and simulation is also an indispensable tool of the information age, used extensively in design, analysis, operations, decision-making, optimization, and education and training. Manufacturing, production and design relies upon simulation to develop efficient production systems and factories that produce quality products. Simulation in industry has yet to meet its full potential. The development of models is very time consuming, particularly for geometries of complex engineering systems such as manufacturing plants, automobiles, aircraft and ships. Computer simulation allows scientists and engineers to understand and predict three-dimensional and time-dependent phenomena in science and engineering discipline. This talk will focus on challenges associated with modeling and simulation in the manufacturing sector and through a number of case studies highlight the benefits gained through the use of such technologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The exposure to fumes and gases is one of the hazards associated with welding operations. Apart from research conducted on the mechanism of fume and gas formation and the relationship between fume formation rates and common welding parameters, little is known about the exposure process during welding. This research project aimed to identify the factors that influence exposure, develop an understanding of their role in the exposure process and through this understanding formulate strategies for the effective control of exposure during welding. To address these aims a literature review and an experimental program was conducted The literature review surveyed epidemiological, toxicological and exposure data. The experimental program involved three approaches, the first, an evaluation of the factors that influence exposure by assessing a metal inert gas/mild steel welding process in a workshop setting. The second approach involved the study of exposure in a controlled environment provided by a wind tunnel and simulated welding process. The final approach was to investigate workplace conditions through an assessment of exposure and control strategies in industry. The exposure to fumes and gases during welding is highly variable and frequently in excess of the health based exposure standards. Exposure is influenced by a number of a factors including the welding process, base material, arc time, electrode, arc current, arc voltage, arc length, electrode polarity, shield gas, wire-to-metal-work distance (metal inert gas), metal transfer mode, intensity of the UV radiation (ozone), the frequency of arc ignitions (ozone), thermal buoyancy generated by the arc process, ventilation (natural and mechanical), the welding environment, the position of the welder, the welders stance, helmet type, and helmet position. Exposure occurs as a result of three processes: the formation of contaminants at or around the arc region; their transport from the arc region, as influenced by the entry and thermal expansion of shield gases, the vigorous production of contaminants, thermal air currents produced by the heat of the arc process, and ventilation; and finally the entry of contaminants into the breathing zone of the welder, as influenced by the position of the welder, the welders stance, helmet type, and the helmet position. The control of exposure during welding can be achieved by several means: through the selection of welding parameters that generate low contaminant formation rates; through the limitation of arc time; and by isolating the breathing zone of the welder from the contaminant plume through the use of ventilation, welder position or the welding helmet as a physical barrier. Effective control is achieved by careful examination of the workplace, the selection of the most appropriate control option, and motivation of the workforce.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The assessment of the direct and indirect requirements for energy is known as embodied energy analysis. For buildings, the direct energy includes that used primarily on site, while the indirect energy includes primarily the energy required for the manufacture of building materials. This thesis is concerned with the completeness and reliability of embodied energy analysis methods. Previous methods tend to address either one of these issues, but not both at the same time. Industry-based methods are incomplete. National statistical methods, while comprehensive, are a ‘black box’ and are subject to errors. A new hybrid embodied energy analysis method is derived to optimise the benefits of previous methods while minimising their flaws. In industry-based studies, known as ‘process analyses’, the energy embodied in a product is traced laboriously upstream by examining the inputs to each preceding process towards raw materials. Process analyses can be significantly incomplete, due to increasing complexity. The other major embodied energy analysis method, ‘input-output analysis’, comprises the use of national statistics. While the input-output framework is comprehensive, many inherent assumptions make the results unreliable. Hybrid analysis methods involve the combination of the two major embodied energy analysis methods discussed above, either based on process analysis or input-output analysis. The intention in both hybrid analysis methods is to reduce errors associated with the two major methods on which they are based. However, the problems inherent to each of the original methods tend to remain, to some degree, in the associated hybrid versions. Process-based hybrid analyses tend to be incomplete, due to the exclusions associated with the process analysis framework. However, input-output-based hybrid analyses tend to be unreliable because the substitution of process analysis data into the input-output framework causes unwanted indirect effects. A key deficiency in previous input-output-based hybrid analysis methods is that the input-output model is a ‘black box’, since important flows of goods and services with respect to the embodied energy of a sector cannot be readily identified. A new input-output-based hybrid analysis method was therefore developed, requiring the decomposition of the input-output model into mutually exclusive components (ie, ‘direct energy paths’). A direct energy path represents a discrete energy requirement, possibly occurring one or more transactions upstream from the process under consideration. For example, the energy required directly to manufacture the steel used in the construction of a building would represent a direct energy path of one non-energy transaction in length. A direct energy path comprises a ‘product quantity’ (for example, the total tonnes of cement used) and a ‘direct energy intensity’ (for example, the energy required directly for cement manufacture, per tonne). The input-output model was decomposed into direct energy paths for the ‘residential building construction’ sector. It was shown that 592 direct energy paths were required to describe 90% of the overall total energy intensity for ‘residential building construction’. By extracting direct energy paths using yet smaller threshold values, they were shown to be mutually exclusive. Consequently, the modification of direct energy paths using process analysis data does not cause unwanted indirect effects. A non-standard individual residential building was then selected to demonstrate the benefits of the new input-output-based hybrid analysis method in cases where the products of a sector may not be similar. Particular direct energy paths were modified with case specific process analysis data. Product quantities and direct energy intensities were derived and used to modify some of the direct energy paths. The intention of this demonstration was to determine whether 90% of the total embodied energy calculated for the building could comprise the process analysis data normally collected for the building. However, it was found that only 51% of the total comprised normally collected process analysis. The integration of process analysis data with 90% of the direct energy paths by value was unsuccessful because: • typically only one of the direct energy path components was modified using process analysis data (ie, either the product quantity or the direct energy intensity); • of the complexity of the paths derived for ‘residential building construction’; and • of the lack of reliable and consistent process analysis data from industry, for both product quantities and direct energy intensities. While the input-output model used was the best available for Australia, many errors were likely to be carried through to the direct energy paths for ‘residential building construction’. Consequently, both the value and relative importance of the direct energy paths for ‘residential building construction’ were generally found to be a poor model for the demonstration building. This was expected. Nevertheless, in the absence of better data from industry, the input-output data is likely to remain the most appropriate for completing the framework of embodied energy analyses of many types of products—even in non-standard cases. ‘Residential building construction’ was one of the 22 most complex Australian economic sectors (ie, comprising those requiring between 592 and 3215 direct energy paths to describe 90% of their total energy intensities). Consequently, for the other 87 non-energy sectors of the Australian economy, the input-output-based hybrid analysis method is likely to produce more reliable results than those calculated for the demonstration building using the direct energy paths for ‘residential building construction’. For more complex sectors than ‘residential building construction’, the new input-output-based hybrid analysis method derived here allows available process analysis data to be integrated with the input-output data in a comprehensive framework. The proportion of the result comprising the more reliable process analysis data can be calculated and used as a measure of the reliability of the result for that product or part of the product being analysed (for example, a building material or component). To ensure that future applications of the new input-output-based hybrid analysis method produce reliable results, new sources of process analysis data are required, including for such processes as services (for example, ‘banking’) and processes involving the transformation of basic materials into complex products (for example, steel and copper into an electric motor). However, even considering the limitations of the demonstration described above, the new input-output-based hybrid analysis method developed achieved the aim of the thesis: to develop a new embodied energy analysis method that allows reliable process analysis data to be integrated into the comprehensive, yet unreliable, input-output framework. Plain language summary Embodied energy analysis comprises the assessment of the direct and indirect energy requirements associated with a process. For example, the construction of a building requires the manufacture of steel structural members, and thus indirectly requires the energy used directly and indirectly in their manufacture. Embodied energy is an important measure of ecological sustainability because energy is used in virtually every human activity and many of these activities are interrelated. This thesis is concerned with the relationship between the completeness of embodied energy analysis methods and their reliability. However, previous industry-based methods, while reliable, are incomplete. Previous national statistical methods, while comprehensive, are a ‘black box’ subject to errors. A new method is derived, involving the decomposition of the comprehensive national statistical model into components that can be modified discretely using the more reliable industry data, and is demonstrated for an individual building. The demonstration failed to integrate enough industry data into the national statistical model, due to the unexpected complexity of the national statistical data and the lack of available industry data regarding energy and non-energy product requirements. These unique findings highlight the flaws in previous methods. Reliable process analysis and input-output data are required, particularly for those processes that were unable to be examined in the demonstration of the new embodied energy analysis method. This includes the energy requirements of services sectors, such as banking, and processes involving the transformation of basic materials into complex products, such as refrigerators. The application of the new method to less complex products, such as individual building materials or components, is likely to be more successful than to the residential building demonstration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Substantial new DNA data were obtained by sequencing the mitochondrial genomes of four crustacean species, resulting in the discovery of a novel gene order in freshwater crayfish. Investigation of evolutionary relationships using mitochondrial genomes challenged established theories of crustacean evolution and diversification in relation to the other major Arthropod groups.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One well acknowledged drawback of traditional parallel kinematic machines (PKMs) is that the ratio of accessible workspace to robot footprint is small for these structures. This is most likely a contributing reason why relatively few PKMs are used in industry today. The SCARA-Tau structure is a parallel robot concept designed with the explicit goal of overcoming this limitation and developing a PKM with a workspace similar to that of a serial type robot of the same size. This paper shows for the first time how a proposed variant of the SCARA-Tau PKM can improve the usability of this robot concept further by significantly reducing the dependence between tool platform position and orientation of the original concept. The inverse kinematics of the proposed variant is derived and a comparison is made between this structure and the original SCARA-Tau concept, both with respect to platform orientation changes and workspace.