914 resultados para Distorted probabilities
Resumo:
Työn päätavoitteena oli kohdeyrityksen kustannuslaskennan kehittäminen, jota varten selvitettiin toimintojen todelliset kustannukset sekä rakennettiin uusi taulukkolaskentaan perustuva hinnoittelumalli. Todellisten kustannukset selvitettiin toimintolaskennan avulla. Yrityksen aiempi kustannuslaskenta perustui perinteiseen lisäyslaskentaan. Työ jakaantui kahteen vaiheeseen: yrityksen kustannuslaskennan nykytilaselvitykseen ja toimintolaskennan toteuttamiseen. Ensimmäisen vaiheen teoriaosuudessa esiteltiin perinteisen kustannuslaskennan ja toimintolaskennan menetelmät sekä vertailtiin niitä keskenään. Empiriaosuudessa käsiteltiin yrityksen kustannusrakenne, tuotekustannuslaskenta, hinnoitteluprosessi ja eri hinnoittelukohteet. Nykytilaselvityksen perusteella laadittiin lista nykyisen kustannuslaskennan ja hinnoittelun kehitettävistä asioista. Kehittäminen päätettiin toteuttaa toimintolaskennan avulla. Toisessa vaiheessa esiteltiin toimintolaskennan toteuttamiseen ja käyttöönottoon liittyvä teoria. Tämän jälkeen suoritettiin toimintokustannusten laskeminen ja uuden hinnoittelumallin rakentaminen. Hinnoittelumallissa haettiin nopeutta uudella materiaalinlaskentatavalla. Työn tuloksina havaittiin, että toteutuneet kustannukset erosivat monen toiminnon kohdalla lisäyslaskennalla lasketuista kustannuksista ja tämä oli vääristänyt tuotteiden hinnoittelua. Toimintolaskennan käyttöönotolla yrityksen kustannuslaskenta ja tuotehinnoittelu saatettiin vastaamaan todellisia kustannuksia. Hinnoittelun nopeutumisella saavutettiin merkittäviä kustannussäästöjä.
Resumo:
Data available in the literature were used to develop a warning system for bean angular leaf spot and anthracnose, caused by Phaeoisariopsis griseola and Colletotrichum lindemuthianum, respectively. The model is based on favorable environmental conditions for the infectious process such as continuous leaf wetness duration and mean air temperature during this subphase of the pathogen-host relationship cycle. Equations published by DALLA PRIA (1977) showing the interactions of those two factors on the disease severity were used. Excell spreadsheet was used to calculate the leaf wetness period needed to cause different infection probabilities at different temperature ranges. These data were employed to elaborate critical period tables used to program a computerized electronic device that records leaf wetness duration and mean temperature and automatically shows the daily disease severity value (DDSV) for each disease. The model should be validated in field experiments under natural infection for which the daily disease severity sum (DDSS) should be identified as a criterion to indicate the beginning and the interval of fungicide applications to control both diseases.
Resumo:
The large biodiversity of cyanobacteria together with the increasing genomics and proteomics metadata provide novel information for finding new commercially valuable metabolites. With the advent of global warming, there is growing interest in the processes that results in efficient CO2 capture through the use of photosynthetic microorganisms such as cyanobacteria. This requires a detailed knowledge of how cyanobacteria respond to the ambient CO2. My study was aimed at understanding the changes in the protein profile of the model organism, Synechocystis PCC 6803 towards the varying CO2 level. In order to achieve this goal I have employed modern proteomics tools such as iTRAQ and DIGE, recombinant DNA techniques to construct different mutants in cyanobacteria and biophysical methods to study the photosynthetic properties. The proteomics study revealed several novel proteins, apart from the well characterized proteins involved in carbon concentrating mechanisms (CCMs), that were upregulated upon shift of the cells from high CO2 concentration (3%) to that in air level (0.039%). The unknown proteins, Slr0006 and flavodiiron proteins (FDPs) Sll0217-Flv4 and Sll0219-Flv2, were selected for further characterization. Although slr0006 was substantially upregulated under Ci limiting conditions, inactivation of the gene did not result in any visual phenotype under various environmental conditions indicating that this protein is not essential for cell survival. However, quantitative proteomics showed the induction of novel plasmid and chromosome encoded proteins in deltaslr0006 under air level CO2 conditions. The expression of the slr0006 gene was found to be strictly dependent on active photosynthetic electron transfer. Slr0006 contains conserved dsRNA binding domain that belongs to the Sua5/YrdC/YciO protein family. Structural modelling of Slr0006 showed an alpha/beta twisted open-sheet structure and a positively charged cavity, indicating a possible binding site for RNA. The 3D model and the co-localization of Slr0006 with ribosomal subunits suggest that it might play a role in translation or ribosome biogenesis. On the other hand, deletions in the sll0217-sll218- sll0219 operon resulted in enhanced photodamage of PSII and distorted energy transfer from phycobilisome (PBS) to PSII, suggesting a dynamic photoprotection role of the operon. Constructed homology models also suggest efficient electron transfer in heterodimeric Flv2/Flv4, apparently involved in PSII photoprotection. Both Slr0006 and FDPs exhibited several common features, including negative regulation by NdhR and ambiguous cellular localization when subjected to different concentrations of divalent ions. This strong association with the membranes remained undisturbed even in the presence of detergent or high salt. My finding brings ample information on three novel proteins and their functions towards carbon limitation. Nevertheless, many pathways and related proteins remain unexplored. The comprehensive understanding of the acclimation processes in cyanobacteria towards varying environmental CO2 levels will help to uncover adaptive mechanisms in other organisms, including higher plants.
Resumo:
Tämä taktiikan tutkimus keskittyy tietokoneavusteisen simuloinnin laskennallisiin menetelmiin, joita voidaan käyttää taktisen tason sotapeleissä. Työn tärkeimmät tuotokset ovat laskennalliset mallit todennäköisyyspohjaisen analyysin mahdollistaviin taktisen tason taistelusimulaattoreihin, joita voidaan käyttää vertailevaan analyysiin joukkue-prikaatitason tarkastelutilanteissa. Laskentamallit keskittyvät vaikuttamiseen. Mallit liittyvät vahingoittavan osuman todennäköisyyteen, jonka perusteella vaikutus joukossa on mallinnettu tilakoneina ja Markovin ketjuina. Edelleen näiden tulokset siirretään tapahtumapuuanalyysiin operaation onnistumisen todennäköisyyden osalta. Pienimmän laskentayksikön mallinnustaso on joukkue- tai ryhmätasolla, jotta laskenta-aika prikaatitason sotapelitarkasteluissa pysyisi riittävän lyhyenä samalla, kun tulokset ovat riittävän tarkkoja suomalaiseen maastoon. Joukkueiden mies- ja asejärjestelmävahvuudet ovat jakaumamuodossa, eivätkä yksittäisiä lukuja. Simuloinnin integroinnissa voidaan käyttää asejärjestelmäkohtaisia predictor corrector –parametreja, mikä mahdollistaa aika-askelta lyhytaikaisempien taistelukentän ilmiöiden mallintamisen. Asemallien pohjana ovat aiemmat tutkimukset ja kenttäkokeet, joista osa kuuluu tähän väitöstutkimukseen. Laskentamallien ohjelmoitavuus ja käytettävyys osana simulointityökalua on osoitettu tekijän johtaman tutkijaryhmän ohjelmoiman ”Sandis”- taistelusimulointiohjelmiston avulla, jota on kehitetty ja käytetty Puolustusvoimien Teknillisessä Tutkimuslaitoksessa. Sandikseen on ohjelmoitu karttakäyttöliittymä ja taistelun kulkua simuloivia laskennallisia malleja. Käyttäjä tai käyttäjäryhmä tekee taktiset päätökset ja syöttää nämä karttakäyttöliittymän avulla simulointiin, jonka tuloksena saadaan kunkin joukkuetason peliyksikön tappioiden jakauma, keskimääräisten tappioiden osalta kunkin asejärjestelmän aiheuttamat tappiot kuhunkin maaliin, ammuskulutus ja radioyhteydet ja niiden tila sekä haavoittuneiden evakuointi-tilanne joukkuetasolta evakuointisairaalaan asti. Tutkimuksen keskeisiä tuloksia (kontribuutio) ovat 1) uusi prikaatitason sotapelitilanteiden laskentamalli, jonka pienin yksikkö on joukkue tai ryhmä; 2) joukon murtumispisteen määritys tappioiden ja haavoittuneiden evakuointiin sitoutuvien taistelijoiden avulla; 3) todennäköisyyspohjaisen riskianalyysin käyttömahdollisuus vertailevassa tutkimuksessa sekä 4) kokeellisesti testatut tulen vaikutusmallit ja 5) toimivat integrointiratkaisut. Työ rajataan maavoimien taistelun joukkuetason todennäköisyysjakaumat luovaan laskentamalliin, kenttälääkinnän malliin ja epäsuoran tulen malliin integrointimenetelmineen sekä niiden antamien tulosten sovellettavuuteen. Ilmasta ja mereltä maahan -asevaikutusta voidaan tarkastella, mutta ei ilma- ja meritaistelua. Menetelmiä soveltavan Sandis -ohjelmiston malleja, käyttötapaa ja ohjelmistotekniikkaa kehitetään edelleen. Merkittäviä jatkotutkimuskohteita mallinnukseen osalta ovat muun muassa kaupunkitaistelu, vaunujen kaksintaistelu ja maaston vaikutus tykistön tuleen sekä materiaalikulutuksen arviointi.
Resumo:
This study aimed to describe the probabilistic structure of the annual series of extreme daily rainfall (Preabs), available from the weather station of Ubatuba, State of São Paulo, Brazil (1935-2009), by using the general distribution of extreme value (GEV). The autocorrelation function, the Mann-Kendall test, and the wavelet analysis were used in order to evaluate the presence of serial correlations, trends, and periodical components. Considering the results obtained using these three statistical methods, it was possible to assume the hypothesis that this temporal series is free from persistence, trends, and periodicals components. Based on quantitative and qualitative adhesion tests, it was found that the GEV may be used in order to quantify the probabilities of the Preabs data. The best results of GEV were obtained when the parameters of this function were estimated using the method of maximum likelihood. The method of L-moments has also shown satisfactory results.
Resumo:
The ongoing global financial crisis has demonstrated the importance of a systemwide, or macroprudential, approach to safeguarding financial stability. An essential part of macroprudential oversight concerns the tasks of early identification and assessment of risks and vulnerabilities that eventually may lead to a systemic financial crisis. Thriving tools are crucial as they allow early policy actions to decrease or prevent further build-up of risks or to otherwise enhance the shock absorption capacity of the financial system. In the literature, three types of systemic risk can be identified: i ) build-up of widespread imbalances, ii ) exogenous aggregate shocks, and iii ) contagion. Accordingly, the systemic risks are matched by three categories of analytical methods for decision support: i ) early-warning, ii ) macro stress-testing, and iii ) contagion models. Stimulated by the prolonged global financial crisis, today's toolbox of analytical methods includes a wide range of innovative solutions to the two tasks of risk identification and risk assessment. Yet, the literature lacks a focus on the task of risk communication. This thesis discusses macroprudential oversight from the viewpoint of all three tasks: Within analytical tools for risk identification and risk assessment, the focus concerns a tight integration of means for risk communication. Data and dimension reduction methods, and their combinations, hold promise for representing multivariate data structures in easily understandable formats. The overall task of this thesis is to represent high-dimensional data concerning financial entities on lowdimensional displays. The low-dimensional representations have two subtasks: i ) to function as a display for individual data concerning entities and their time series, and ii ) to use the display as a basis to which additional information can be linked. The final nuance of the task is, however, set by the needs of the domain, data and methods. The following ve questions comprise subsequent steps addressed in the process of this thesis: 1. What are the needs for macroprudential oversight? 2. What form do macroprudential data take? 3. Which data and dimension reduction methods hold most promise for the task? 4. How should the methods be extended and enhanced for the task? 5. How should the methods and their extensions be applied to the task? Based upon the Self-Organizing Map (SOM), this thesis not only creates the Self-Organizing Financial Stability Map (SOFSM), but also lays out a general framework for mapping the state of financial stability. This thesis also introduces three extensions to the standard SOM for enhancing the visualization and extraction of information: i ) fuzzifications, ii ) transition probabilities, and iii ) network analysis. Thus, the SOFSM functions as a display for risk identification, on top of which risk assessments can be illustrated. In addition, this thesis puts forward the Self-Organizing Time Map (SOTM) to provide means for visual dynamic clustering, which in the context of macroprudential oversight concerns the identification of cross-sectional changes in risks and vulnerabilities over time. Rather than automated analysis, the aim of visual means for identifying and assessing risks is to support disciplined and structured judgmental analysis based upon policymakers' experience and domain intelligence, as well as external risk communication.
Resumo:
A linear prediction procedure is one of the approved numerical methods of signal processing. In the field of optical spectroscopy it is used mainly for extrapolation known parts of an optical signal in order to obtain a longer one or deduce missing signal samples. The first is needed particularly when narrowing spectral lines for the purpose of spectral information extraction. In the present paper the coherent anti-Stokes Raman scattering (CARS) spectra were under investigation. The spectra were significantly distorted by the presence of nonlinear nonresonant background. In addition, line shapes were far from Gaussian/Lorentz profiles. To overcome these disadvantages the maximum entropy method (MEM) for phase spectrum retrieval was used. The obtained broad MEM spectra were further underwent the linear prediction analysis in order to be narrowed.
Resumo:
Ambitious energy targets set by EU put pressures to increase share of renewable electricity supply in this and next decades and therefore, some EU member countries have boosted increasing renewable energy generation capacity by implementing subsidy schemes on national level. In this study, two different change approaches to increase renewable energy supply and increase self-sufficiency of supply are assessed with respect to their impacts on power system, electricity market and electricity generation costs in Finland. It is obtained that the current electricity generation costs are high compared to opportunities of earnings from present-day investor’s perspective. In addition, the growth expectations of consumptions and the price forecasts do not stimulate investing in new generation capacity. Revolutionary transition path is driven by administrative and political interventions to achieve the energy targets. Evolutionary transition path is driven by market-based mechanisms, such as market itself and emission trading scheme. It is obtained in this study that in the revolutionary transition path operation of market-based mechanisms is distorted to some extent and it is likely that this path requires providing more public financial resources compared to evolutionary transition path. In the evolutionary transition path the energy targets are not achieved as quickly but market-based mechanisms function better and investment environment endures more stable compared to revolutionary transition path.
Resumo:
The association between HLA specificities and leprosy was investigated in a Southern Brazilian population. One hundred and twenty-one patients and 147 controls were typed for HLA-A, B, Cw, DR and DQ. Patients were subdivided into the following subgroups, according to clinical, histological and immunological criteria: lepromatous (N = 55), tuberculoid (N = 32), dimorphous (N = 20), and indeterminate (N = 14). The frequencies of HLA specificities were compared between the total group of patients and controls, and between the same controls and each subgroup of patients. After correction of the probabilities, deviations were not significant, except for the DR2 specificity, which presented a frequency of 44.2% in the total group of patients and 56.3% in the subgroup of individuals with the tuberculoid form of the disease, compared to 23.3% in the controls. Stratified analysis showed that the increased DR2 frequency in the total group of patients was due to the subgroups with the tuberculoid and dimorphous forms. The relative risk of tuberculoid leprosy for DR2-positive individuals was 4.2, and the etiologic fraction of DR2 was 0.429. In conclusion, a positive association of the DR2 specificity with the tuberculoid form of leprosy, but not with the lepromatous, dimorphous, or indeterminate forms, was demonstrated in this Southern Brazilian population
Resumo:
Cardiovascular diseases (CVDs) are known to be associated with poor sleep quality in general populations, but they have not been consistently associated with specific work schedules. Studies of CVD generally do not simultaneously consider sleep and work schedules, but that approach could help to disentangle their effects. We investigated the association between insomnia and a self-reported physician diagnosis of CVD in day and night workers, considering all sleep episodes during nocturnal and diurnal sleep. A cross-sectional study was conducted in 1307 female nursing professionals from 3 public hospitals, using baseline data from the “Health and Work in Nursing - a Cohort Study.” Participants were divided into two groups: i) day workers with no previous experience in night shifts (n=281) and whose data on insomnia were related to nocturnal sleep and ii) those who worked exclusively at night (n=340) and had data on both nocturnal and diurnal sleep episodes, as they often sleep at daytime. Multiple logistic regression analysis was performed. Among day workers, insomnia complaints increased the odds of CVD 2.79-fold (95% CI=1.01-6.71) compared with workers who had no complaints. Among night workers, reports of insomnia during both nocturnal and diurnal sleep increased the odds of reported CVD 3.07-fold (95% CI=1.30-7.24). Workers with insomnia had similar probabilities of reporting CVD regardless of their work schedule, suggesting a relationship to insomnia and not to night work per se. The results also highlighted the importance of including evaluation of all sleep episodes (diurnal plus nocturnal sleep) for night workers.
Resumo:
Modern food systems face complex global challenges such as climate change, resource scarcities, population growth, concentration and globalization. It is not possible to forecast how all these challenges will affect food systems, but futures research methods provide possibilities to enable better understanding of possible futures and that way increases futures awareness. In this thesis, the two-round online Delphi method was utilized to research experts’ opinions about the present and the future resilience of the Finnish food system up to 2050. The first round questionnaire was constructed based on the resilience indicators developed for agroecosystems. Sub-systems in the study were primary production (main focus), food industry, retail and consumption. Based on the results from the first round, the future images were constructed for primary production and food industry sub-sections. The second round asked experts’ opinion about the future images’ probability and desirability. In addition, panarchy scenarios were constructed by using the adaptive cycle and panarchy frameworks. Furthermore, a new approach to general resilience indicators was developed combining “categories” of the social ecological systems (structure, behaviors and governance) and general resilience parameters (tightness of feedbacks, modularity, diversity, the amount of change a system can withstand, capacity of learning and self- organizing behavior). The results indicate that there are strengths in the Finnish food system for building resilience. According to experts organic farms and larger farms are perceived as socially self-organized, which can promote innovations and new experimentations for adaptation to changing circumstances. In addition, organic farms are currently seen as the most ecologically self-regulated farms. There are also weaknesses in the Finnish food system restricting resilience building. It is important to reach optimal redundancy, in which efficiency and resilience are in balance. In the whole food system, retail sector will probably face the most dramatic changes in the future, especially, when panarchy scenarios and the future images are reflected. The profitability of farms is and will be a critical cornerstone of the overall resilience in primary production. All in all, the food system experts have very positive views concerning the resilience development of the Finnish food system in the future. Sometimes small and local is beautiful, sometimes large and international is more resilient. However, when probabilities and desirability of the future images were questioned, there were significant deviations. It appears that experts do not always believe desirable futures to materialize.
Resumo:
Object detection is a fundamental task of computer vision that is utilized as a core part in a number of industrial and scientific applications, for example, in robotics, where objects need to be correctly detected and localized prior to being grasped and manipulated. Existing object detectors vary in (i) the amount of supervision they need for training, (ii) the type of a learning method adopted (generative or discriminative) and (iii) the amount of spatial information used in the object model (model-free, using no spatial information in the object model, or model-based, with the explicit spatial model of an object). Although some existing methods report good performance in the detection of certain objects, the results tend to be application specific and no universal method has been found that clearly outperforms all others in all areas. This work proposes a novel generative part-based object detector. The generative learning procedure of the developed method allows learning from positive examples only. The detector is based on finding semantically meaningful parts of the object (i.e. a part detector) that can provide additional information to object location, for example, pose. The object class model, i.e. the appearance of the object parts and their spatial variance, constellation, is explicitly modelled in a fully probabilistic manner. The appearance is based on bio-inspired complex-valued Gabor features that are transformed to part probabilities by an unsupervised Gaussian Mixture Model (GMM). The proposed novel randomized GMM enables learning from only a few training examples. The probabilistic spatial model of the part configurations is constructed with a mixture of 2D Gaussians. The appearance of the parts of the object is learned in an object canonical space that removes geometric variations from the part appearance model. Robustness to pose variations is achieved by object pose quantization, which is more efficient than previously used scale and orientation shifts in the Gabor feature space. Performance of the resulting generative object detector is characterized by high recall with low precision, i.e. the generative detector produces large number of false positive detections. Thus a discriminative classifier is used to prune false positive candidate detections produced by the generative detector improving its precision while keeping high recall. Using only a small number of positive examples, the developed object detector performs comparably to state-of-the-art discriminative methods.
Resumo:
Modern food systems face complex global challenges such as climate change, resource scarcities, population growth, concentration and globalization. It is not possible to forecast how all these challenges will affect food systems, but futures research methods provide possibilities to enable better understanding of possible futures and that way increases futures awareness. In this thesis, the two-round online Delphi method was utilized to research experts’ opinions about the present and the future resilience of the Finnish food system up to 2050. The first round questionnaire was constructed based on the resilience indicators developed for agroecosystems. Sub-systems in the study were primary production (main focus), food industry, retail and consumption. Based on the results from the first round, the future images were constructed for primary production and food industry sub-sections. The second round asked experts’ opinion about the future images’ probability and desirability. In addition, panarchy scenarios were constructed by using the adaptive cycle and panarchy frameworks. Furthermore, a new approach to general resilience indicators was developed combining “categories” of the social ecological systems (structure, behaviors and governance) and general resilience parameters (tightness of feedbacks, modularity, diversity, the amount of change a system can withstand, capacity of learning and self- organizing behavior). The results indicate that there are strengths in the Finnish food system for building resilience. According to experts organic farms and larger farms are perceived as socially self-organized, which can promote innovations and new experimentations for adaptation to changing circumstances. In addition, organic farms are currently seen as the most ecologically self-regulated farms. There are also weaknesses in the Finnish food system restricting resilience building. It is important to reach optimal redundancy, in which efficiency and resilience are in balance. In the whole food system, retail sector will probably face the most dramatic changes in the future, especially, when panarchy scenarios and the future images are reflected. The profitability of farms is and will be a critical cornerstone of the overall resilience in primary production. All in all, the food system experts have very positive views concerning the resilience development of the Finnish food system in the future. Sometimes small and local is beautiful, sometimes large and international is more resilient. However, when probabilities and desirability of the future images were questioned, there were significant deviations. It appears that experts do not always believe desirable futures to materialize.
Resumo:
Ordered probit regression was used to analyze data of sensory acceptance tests designed to study the effect of brand name on the acceptability of beer samples. Eight different brands of Pilsen beer were evaluated by 101 consumers in two sessions of acceptance tests: blind evaluation and brand information test. Ordered probit regression, although a relatively sophisticated technique compared to others used to analyze sensory data, was chosen to enable the observation of consumers' behavior using graphical interpretations of estimated probabilities plotted against hedonic scales. It can be concluded that brands B, C, and D had a positive effect on the sensory acceptance of the product, whereas brands A, F, G, and H had a negative influence on consumers' evaluation of the samples. On the other hand, brand E had little influence on consumers' assessment.
Resumo:
Financial time series have a tendency of abruptly changing their behavior and maintain this behavior for several consecutive periods, and commodity futures returns are not an exception. This quality proposes that nonlinear models, as opposed to linear models, can more accurately describe returns and volatility. Markov regime switching models are able to match this behavior and have become a popular way to model financial time series. This study uses Markov regime switching model to describe the behavior of energy futures returns on a commodity level, because studies show that commodity futures are a heterogeneous asset class. The purpose of this thesis is twofold. First, determine how many regimes characterize individual energy commodities’ returns in different return frequencies. Second, study the characteristics of these regimes. We extent the previous studies on the subject in two ways: We allow for the possibility that the number of regimes may exceed two, as well as conduct the research on individual commodities rather than on commodity indices or subgroups of these indices. We use daily, weekly and monthly time series of Brent crude oil, WTI crude oil, natural gas, heating oil and gasoil futures returns over 1994–2014, where available, to carry out the study. We apply the likelihood ratio test to determine the sufficient number of regimes for each commodity and data frequency. Then the time series are modeled with Markov regime switching model to obtain the return distribution characteristics of each regime, as well as the transition probabilities of moving between regimes. The results for the number of regimes suggest that daily energy futures return series consist of three to six regimes, whereas weekly and monthly returns for all energy commodities display only two regimes. When the number of regimes exceeds two, there is a tendency for the time series of energy commodities to form groups of regimes. These groups are usually quite persistent as a whole because probability of a regime switch inside the group is high. However, individual regimes in these groups are not persistent and the process oscillates between these regimes frequently. Regimes that are not part of any group are generally persistent, but show low ergodic probability, i.e. rarely prevail in the market. This study also suggests that energy futures return series characterized with two regimes do not necessarily display persistent bull and bear regimes. In fact, for the majority of time series, bearish regime is considerably less persistent. Rahoituksen aikasarjoilla on taipumus arvaamattomasti muuttaa käyttäytymistään ja jatkaa tätä uutta käyttäytymistä useiden periodien ajan, eivätkä hyödykefutuurien tuotot tee tähän poikkeusta. Tämän ominaisuuden johdosta lineaaristen mallien sijasta epälineaariset mallit pystyvät tarkemmin kuvailemaan esimerkiksi tuottojen jakauman parametreja. Markov regiiminvaihtomallit pystyvät vangitsemaan tämän ominaisuuden ja siksi niistä on tullut suosittuja rahoituksen aikasarjojen mallintamisessa. Tämä tutkimus käyttää Markov regiiminvaihtomallia kuvaamaan yksittäisten energiafutuurien tuottojen käyttäytymistä, sillä tutkimukset osoittavat hyödykefutuurien olevan hyvin heterogeeninen omaisuusluokka. Tutkimuksen tarkoitus on selvittää, kuinka monta regiimiä tarvitaan kuvaamaan energiafutuurien tuottoja eri tuottofrekvensseillä ja mitkä ovat näiden regiimien ominaisuudet. Aiempaa tutkimusta aiheesta laajennetaan määrittämällä regiimien lukumäärä tilastotieteellisen testauksen menetelmin sekä tutkimalla energiafutuureja yksittäin; ei indeksi- tai alaindeksitasolla. Tutkimuksessa käytetään päivä-, viikko- ja kuukausiaikasarjoja Brent-raakaöljyn, WTI-raakaöljyn, maakaasun, lämmitysöljyn ja polttoöljyn tuotoista aikaväliltä 1994–2014, siltä osin kuin aineistoa on saatavilla. Likelihood ratio -testin avulla estimoidaan kaikille aikasarjoille regiimien määrä,jonka jälkeen Markov regiiminvaihtomallia hyödyntäen määritetään yksittäisten regiimientuottojakaumien ominaisuudet sekä regiimien välinen transitiomatriisi. Tulokset regiimien lukumäärän osalta osoittavat, että energiafutuurien päiväkohtaisten tuottojen aikasarjoissa regiimien lukumäärä vaihtelee kolmen ja kuuden välillä. Viikko- ja kuukausituottojen kohdalla kaikkien energiafutuurien prosesseissa regiimien lukumäärä on kaksi. Kun regiimejä on enemmän kuin kaksi, on prosessilla taipumus muodostaa regiimeistä koostuvia ryhmiä. Prosessi pysyy ryhmän sisällä yleensä pitkään, koska todennäköisyys siirtyä ryhmään kuuluvien regiimien välillä on suuri. Yksittäiset regiimit ryhmän sisällä eivät kuitenkaan ole kovin pysyviä. Näin ollen prosessi vaihtelee ryhmän sisäisten regiimien välillä tiuhaan. Regiimit, jotka eivät kuulu ryhmään, ovat yleensä pysyviä, mutta prosessi ajautuu niihin vain harvoin, sillä todennäköisyys siirtyä muista regiimeistä niihin on pieni. Tutkimuksen tulokset osoittavat myös, että prosesseissa, joita ohjaa kaksi regiimiä, nämä regiimit eivät välttämättä ole pysyvät bull- ja bear-markkinatilanteet. Tulokset osoittavat sen sijaan, että bear-markkinatilanne on energiafutuureissa selvästi vähemmän pysyvä.