972 resultados para Direct broadcast satellite television


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A group of high-order finite-difference schemes for incompressible flow was implemented to simulate the evolution of turbulent spots in channel flows. The long-time accuracy of these schemes was tested by comparing the evolution of small disturbances to a plane channel flow against the growth rate predicted by linear theory. When the perturbation is the unstable eigenfunction at a Reynolds number of 7500, the solution grows only if there are a comparatively large number of (equispaced) grid points across the channel. Fifth-order upwind biasing of convection terms is found to be worse than second-order central differencing. But, for a decaying mode at a Reynolds number of 1000, about a fourth of the points suffice to obtain the correct decay rate. We show that this is due to the comparatively high gradients in the unstable eigenfunction near the walls. So, high-wave-number dissipation of the high-order upwind biasing degrades the solution especially. But for a well-resolved calculation, the weak dissipation does not degrade solutions even over the very long times (O(100)) computed in these tests. Some new solutions of spot evolution in Couette flows with pressure gradients are presented. The approach to self-similarity at long times can be seen readily in contour plots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-supported 40W Direct Methanol Fuel Cell (DMFC) system has been developed and performance tested. The auxiliaries in the DMFC system comprise a methanol sensor, a liquid-level indicator, and fuel and air pumps that consume a total power of about 5W. The system has a 15-cell DMFC stack with active electrode-area of 45 cm(2). The self-supported DMFC system addresses issues related to water recovery from the cathode exhaust, and maintains a constant methanol-feed concentration with thermal management in the system. Pure methanol and water from cathode exhaust are pumped to the methanol-mixing tank where the liquid level is monitored and controlled with the help of a liquid-level indicator. During the operation, methanol concentration in the feed solution at the stack outlet is monitored using a methanol sensor, and pure methanol is added to restore the desired methanol concentration in the feed tank by adding the product water from the cathode exhaust. The feed-rate requirements of fuel and oxidant are designed for the stack capacity of 40W. The self-supported DMFC system is ideally suited for various defense and civil applications and, in particular, for charging the storage batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of realistic representation of sea surface temperature (SST) on the numerical simulation of track and intensity of tropical cyclones formed over the north Indian Ocean is studied using the Weather Research and Forecast (WRF) model. We have selected two intense tropical cyclones formed over the Bay of Bengal for studying the SST impact. Two different sets of SSTs were used in this study: one from TRMM Microwave Imager (TMI) satellite and other is the weekly averaged Reynold's SST analysis from National Center for Environmental Prediction (NCEP). WRF simulations were conducted using the Reynold's and TMI SST as model boundary condition for the two cyclone cases selected. The TMI SST which has a better temporal and spatial resolution showed sharper gradient when compared to the Reynold's SST. The use of TMI SST improved the WRF cyclone intensity prediction when compared to that using Reynold's SST for both the cases studied. The improvements in intensity were mainly due to the improved prediction of surface latent and sensible heat fluxes. The use of TMI SST in place of Reynold's SST improved cyclone track prediction for Orissa super cyclone but slightly degraded track prediction for cyclone Mala. The present modeling study supports the well established notion that the horizontal SST gradient is one of the major driving forces for the intensification and movement of tropical cyclones over the Indian Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.Cambridge University Press, 2006. [2] H. Bolcskei, D. Gesbert, C. B. Papadias, and A.-J. van der Veen, Spacetime Wireless Systems: From Array Processing to MIMO Communications.Cambridge University Press, 2006. [3] Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multiuser MIMO downlink,” IEEE Commun. Mag.,vol. 42, pp. 60–67, Oct. 2004. [4] K. Kusume, M. Joham,W. Utschick, and G. Bauch, “Efficient tomlinsonharashima precoding for spatial multiplexing on flat MIMO channel,”in Proc. IEEE ICC’2005, May 2005, pp. 2021–2025. [5] R. Fischer, C. Windpassinger, A. Lampe, and J. Huber, “MIMO precoding for decentralized receivers,” in Proc. IEEE ISIT’2002, 2002, p.496. [6] M. Schubert and H. Boche, “Iterative multiuser uplink and downlink beamforming under SINR constraints,” IEEE Trans. Signal Process.,vol. 53, pp. 2324–2334, Jul. 2005. [7] ——, “Solution of multiuser downlink beamforming problem with individual SINR constraints,” IEEE Trans. Veh. Technol., vol. 53, pp.18–28, Jan. 2004. [8] A. Wiesel, Y. C. Eldar, and Shamai, “Linear precoder via conic optimization for fixed MIMO receivers,” IEEE Trans. Signal Process., vol. 52,pp. 161–176, Jan. 2006. [9] N. Jindal, “MIMO broadcast channels with finite rate feed-back,” in Proc. IEEE GLOBECOM’2005, Nov. 2005. [10] R. Hunger, F. Dietrich, M. Joham, and W. Utschick, “Robust transmit zero-forcing filters,” in Proc. ITG Workshop on Smart Antennas, Munich,Mar. 2004, pp. 130–137. [11] M. B. Shenouda and T. N. Davidson, “Linear matrix inequality formulations of robust QoS precoding for broadcast channels,” in Proc.CCECE’2007, Apr. 2007, pp. 324–328. [12] M. Payaro, A. Pascual-Iserte, and M. A. Lagunas, “Robust power allocation designs for multiuser and multiantenna downlink communication systems through convex optimization,” IEEE J. Sel. Areas Commun.,vol. 25, pp. 1392–1401, Sep. 2007. [13] M. Biguesh, S. Shahbazpanahi, and A. B. Gershman, “Robust downlink power control in wireless cellular systems,” EURASIP Jl. Wireless Commun. Networking, vol. 2, pp. 261–272, 2004. [14] B. Bandemer, M. Haardt, and S. Visuri, “Liner MMSE multi-user MIMO downlink precoding for users with multple antennas,” in Proc.PIMRC’06, Sep. 2006, pp. 1–5. [15] J. Zhang, Y. Wu, S. Zhou, and J. Wang, “Joint linear transmitter and receiver design for the downlink of multiuser MIMO systems,” IEEE Commun. Lett., vol. 9, pp. 991–993, Nov. 2005. [16] S. Shi, M. Schubert, and H. Boche, “Downlink MMSE transceiver optimization for multiuser MIMO systems: Duality and sum-mse minimization,”IEEE Trans. Signal Process., vol. 55, pp. 5436–5446, Nov.2007. [17] A. Mezghani, M. Joham, R. Hunger, and W. Utschick, “Transceiver design for multi-user MIMO systems,” in Proc. WSA 2006, Mar. 2006. [18] R. Doostnejad, T. J. Lim, and E. Sousa, “Joint precoding and beamforming design for the downlink in a multiuser MIMO system,” in Proc.WiMob’2005, Aug. 2005, pp. 153–159. [19] N. Vucic, H. Boche, and S. Shi, “Robust transceiver optimization in downlink multiuser MIMO systems with channel uncertainty,” in Proc.IEEE ICC’2008, Beijing, China, May 2008. [20] A. Ben-Tal and A. Nemirovsky, “Selected topics in robust optimization,”Math. Program., vol. 112, pp. 125–158, Feb. 2007. [21] D. Bertsimas and M. Sim, “Tractable approximations to robust conic optimization problems,” Math. Program., vol. 107, pp. 5–36, Jun. 2006. [22] P. Ubaidulla and A. Chockalingam, “Robust Transceiver Design for Multiuser MIMO Downlink,” in Proc. IEEE Globecom’2008, New Orleans, USA, Dec. 2008, to appear. [23] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004. [24] G. H. Golub and C. F. V. Loan, Matrix Computations. The John Hopkins University Press, 1996.