988 resultados para Differential geometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theory of two-point boundary value problems analogous to the theory of initial value problems for stochastic ordinary differential equations whose solutions form Markov processes is developed. The theory of initial value problems consists of three main parts: the proof that the solution process is markovian and diffusive; the construction of the Kolmogorov or Fokker-Planck equation of the process; and the proof that the transistion probability density of the process is a unique solution of the Fokker-Planck equation.

It is assumed here that the stochastic differential equation under consideration has, as an initial value problem, a diffusive markovian solution process. When a given boundary value problem for this stochastic equation almost surely has unique solutions, we show that the solution process of the boundary value problem is also a diffusive Markov process. Since a boundary value problem, unlike an initial value problem, has no preferred direction for the parameter set, we find that there are two Fokker-Planck equations, one for each direction. It is shown that the density of the solution process of the boundary value problem is the unique simultaneous solution of this pair of Fokker-Planck equations.

This theory is then applied to the problem of a vibrating string with stochastic density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combining differential confocal microscopy and an annular pupil filter, we obtained the normalized axial intensity distribution curve of an optical system. We used the sharp slopes of the axial response curve of the optical system to measure the surface profile of a reflection grating. Experimental results prove that this method can extend the axial dynamic range and improve the transverse resolution of three-dimensional profilometry by sacrificing axial resolution. (C) 2000 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel account of the theory of commutative spectral triples and their two closest noncommutative generalisations, almost-commutative spectral triples and toric noncommutative manifolds, with a focus on reconstruction theorems, viz, abstract, functional-analytic characterisations of global-analytically defined classes of spectral triples. We begin by reinterpreting Connes's reconstruction theorem for commutative spectral triples as a complete noncommutative-geometric characterisation of Dirac-type operators on compact oriented Riemannian manifolds, and in the process clarify folklore concerning stability of properties of spectral triples under suitable perturbation of the Dirac operator. Next, we apply this reinterpretation of the commutative reconstruction theorem to obtain a reconstruction theorem for almost-commutative spectral triples. In particular, we propose a revised, manifestly global-analytic definition of almost-commutative spectral triple, and, as an application of this global-analytic perspective, obtain a general result relating the spectral action on the total space of a finite normal compact oriented Riemannian cover to that on the base space. Throughout, we discuss the relevant refinements of these definitions and results to the case of real commutative and almost-commutative spectral triples. Finally, we outline progess towards a reconstruction theorem for toric noncommutative manifolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis introduces fundamental equations and numerical methods for manipulating surfaces in three dimensions via conformal transformations. Conformal transformations are valuable in applications because they naturally preserve the integrity of geometric data. To date, however, there has been no clearly stated and consistent theory of conformal transformations that can be used to develop general-purpose geometry processing algorithms: previous methods for computing conformal maps have been restricted to the flat two-dimensional plane, or other spaces of constant curvature. In contrast, our formulation can be used to produce---for the first time---general surface deformations that are perfectly conformal in the limit of refinement. It is for this reason that we commandeer the title Conformal Geometry Processing.

The main contribution of this thesis is analysis and discretization of a certain time-independent Dirac equation, which plays a central role in our theory. Given an immersed surface, we wish to construct new immersions that (i) induce a conformally equivalent metric and (ii) exhibit a prescribed change in extrinsic curvature. Curvature determines the potential in the Dirac equation; the solution of this equation determines the geometry of the new surface. We derive the precise conditions under which curvature is allowed to evolve, and develop efficient numerical algorithms for solving the Dirac equation on triangulated surfaces.

From a practical perspective, this theory has a variety of benefits: conformal maps are desirable in geometry processing because they do not exhibit shear, and therefore preserve textures as well as the quality of the mesh itself. Our discretization yields a sparse linear system that is simple to build and can be used to efficiently edit surfaces by manipulating curvature and boundary data, as demonstrated via several mesh processing applications. We also present a formulation of Willmore flow for triangulated surfaces that permits extraordinarily large time steps and apply this algorithm to surface fairing, geometric modeling, and construction of constant mean curvature (CMC) surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid bilayer membranes are models for cell membranes--the structure that helps regulate cell function. Cell membranes are heterogeneous, and the coupling between composition and shape gives rise to complex behaviors that are important to regulation. This thesis seeks to systematically build and analyze complete models to understand the behavior of multi-component membranes.

We propose a model and use it to derive the equilibrium and stability conditions for a general class of closed multi-component biological membranes. Our analysis shows that the critical modes of these membranes have high frequencies, unlike single-component vesicles, and their stability depends on system size, unlike in systems undergoing spinodal decomposition in flat space. An important implication is that small perturbations may nucleate localized but very large deformations. We compare these results with experimental observations.

We also study open membranes to gain insight into long tubular membranes that arise for example in nerve cells. We derive a complete system of equations for open membranes by using the principle of virtual work. Our linear stability analysis predicts that the tubular membranes tend to have coiling shapes if the tension is small, cylindrical shapes if the tension is moderate, and beading shapes if the tension is large. This is consistent with experimental observations reported in the literature in nerve fibers. Further, we provide numerical solutions to the fully nonlinear equilibrium equations in some problems, and show that the observed mode shapes are consistent with those suggested by linear stability. Our work also proves that beadings of nerve fibers can appear purely as a mechanical response of the membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moving mesh methods (also called r-adaptive methods) are space-adaptive strategies used for the numerical simulation of time-dependent partial differential equations. These methods keep the total number of mesh points fixed during the simulation, but redistribute them over time to follow the areas where a higher mesh point density is required. There are a very limited number of moving mesh methods designed for solving field-theoretic partial differential equations, and the numerical analysis of the resulting schemes is challenging. In this thesis we present two ways to construct r-adaptive variational and multisymplectic integrators for (1+1)-dimensional Lagrangian field theories. The first method uses a variational discretization of the physical equations and the mesh equations are then coupled in a way typical of the existing r-adaptive schemes. The second method treats the mesh points as pseudo-particles and incorporates their dynamics directly into the variational principle. A user-specified adaptation strategy is then enforced through Lagrange multipliers as a constraint on the dynamics of both the physical field and the mesh points. We discuss the advantages and limitations of our methods. The proposed methods are readily applicable to (weakly) non-degenerate field theories---numerical results for the Sine-Gordon equation are presented.

In an attempt to extend our approach to degenerate field theories, in the last part of this thesis we construct higher-order variational integrators for a class of degenerate systems described by Lagrangians that are linear in velocities. We analyze the geometry underlying such systems and develop the appropriate theory for variational integration. Our main observation is that the evolution takes place on the primary constraint and the 'Hamiltonian' equations of motion can be formulated as an index 1 differential-algebraic system. We then proceed to construct variational Runge-Kutta methods and analyze their properties. The general properties of Runge-Kutta methods depend on the 'velocity' part of the Lagrangian. If the 'velocity' part is also linear in the position coordinate, then we show that non-partitioned variational Runge-Kutta methods are equivalent to integration of the corresponding first-order Euler-Lagrange equations, which have the form of a Poisson system with a constant structure matrix, and the classical properties of the Runge-Kutta method are retained. If the 'velocity' part is nonlinear in the position coordinate, we observe a reduction of the order of convergence, which is typical of numerical integration of DAEs. We also apply our methods to several models and present the results of our numerical experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partial differential equations (PDEs) with multiscale coefficients are very difficult to solve due to the wide range of scales in the solutions. In the thesis, we propose some efficient numerical methods for both deterministic and stochastic PDEs based on the model reduction technique.

For the deterministic PDEs, the main purpose of our method is to derive an effective equation for the multiscale problem. An essential ingredient is to decompose the harmonic coordinate into a smooth part and a highly oscillatory part of which the magnitude is small. Such a decomposition plays a key role in our construction of the effective equation. We show that the solution to the effective equation is smooth, and could be resolved on a regular coarse mesh grid. Furthermore, we provide error analysis and show that the solution to the effective equation plus a correction term is close to the original multiscale solution.

For the stochastic PDEs, we propose the model reduction based data-driven stochastic method and multilevel Monte Carlo method. In the multiquery, setting and on the assumption that the ratio of the smallest scale and largest scale is not too small, we propose the multiscale data-driven stochastic method. We construct a data-driven stochastic basis and solve the coupled deterministic PDEs to obtain the solutions. For the tougher problems, we propose the multiscale multilevel Monte Carlo method. We apply the multilevel scheme to the effective equations and assemble the stiffness matrices efficiently on each coarse mesh grid. In both methods, the $\KL$ expansion plays an important role in extracting the main parts of some stochastic quantities.

For both the deterministic and stochastic PDEs, numerical results are presented to demonstrate the accuracy and robustness of the methods. We also show the computational time cost reduction in the numerical examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis introduces new tools for geometric discretization in computer graphics and computational physics. Our work builds upon the duality between weighted triangulations and power diagrams to provide concise, yet expressive discretization of manifolds and differential operators. Our exposition begins with a review of the construction of power diagrams, followed by novel optimization procedures to fully control the local volume and spatial distribution of power cells. Based on this power diagram framework, we develop a new family of discrete differential operators, an effective stippling algorithm, as well as a new fluid solver for Lagrangian particles. We then turn our attention to applications in geometry processing. We show that orthogonal primal-dual meshes augment the notion of local metric in non-flat discrete surfaces. In particular, we introduce a reduced set of coordinates for the construction of orthogonal primal-dual structures of arbitrary topology, and provide alternative metric characterizations through convex optimizations. We finally leverage these novel theoretical contributions to generate well-centered primal-dual meshes, sphere packing on surfaces, and self-supporting triangulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesta dissertação é apresentada uma modelagem analítica para o processo evolucionário formulado pela Teoria da Evolução por Endossimbiose representado através de uma sucessão de estágios envolvendo diferentes interações ecológicas e metábolicas entre populações de bactérias considerando tanto a dinâmica populacional como os processos produtivos dessas populações. Para tal abordagem é feito uso do sistema de equações diferenciais conhecido como sistema de Volterra-Hamilton bem como de determinados conceitos geométricos envolvendo a Teoria KCC e a Geometria Projetiva. Os principais cálculos foram realizados pelo pacote de programação algébrica FINSLER, aplicado sobre o MAPLE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noise measurements from 140°K to 350°K ambient temperature and between 10kHz and 22MHz performed on a double injection silicon diode as a function of operating point indicate that the high frequency noise depends linearly on the ambient temperature T and on the differential conductance g measured at the same frequency. The noise is represented quantitatively by〈i^2〉 = α•4kTgΔf. A new interpretation demands Nyquist noise with α ≡ 1 in these devices at high frequencies. This is in accord with an equivalent circuit derived for the double injection process. The effects of diode geometry on the static I-V characteristic as well as on the ac properties are illustrated. Investigation of the temperature dependence of double injection yields measurements of the temperature variation of the common high-level lifetime τ(τ ∝ T^2), the hole conductivity mobility µ_p (µ_p ∝ T^(-2.18)) and the electron conductivity mobility µ_n(µ_n ∝ T^(-1.75)).