971 resultados para Different temperatures
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The electrical degradation phenomena of zinc oxide-based varistors were studied using a high-energy current pulse and a.c. polarization at different temperatures. Activation energy measurements during the degradation process showed that these phenomena are associated with diffusion and that the diffusion-controlling species are slower than Zn., For degradation promoted by current pulses of 8×20 μs, the Schottky potential barrier deformation was measured. A decrease in height and width of the potential barrier due to the reduction of surface states density, N s, without a significant change in donor density, N d, was observed. To explain these results, a modification of the unstable components model is proposed for the potential barrier in which the degradation is due to oxi-reduction reactions between atomic defects. These reactions promote the elimination of zinc vacancies and/or adsorbed oxygen on the grain boundaries. © 1992 Chapman & Hall.
Resumo:
A recent report of the parasitic mite species Acarophenax lacunatus (Cross and Krantz) (Prostigmata: Acarophenacidae) attacking populations of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) led to the present investigation. Maximum female size and average number of progeny per female mite were assessed at eight different temperatures (ranging from 20 to 41°C) and 60% r.h. using R. dominica as the host. The ability of the mite species to suppress eggs, first instar larvae, and adults of R. dominica was assessed at 30°C and 60% r.h. The largest female sizes of the mite and progeny numbers were obtained around 30°C (259 μm and 17 offspring/female respectively) with minimum values obtained at the most extreme temperatures used in this study. Mite densities of at least four individuals per 500 ml jar containing 50 adults of R. dominica, resulted in almost complete suppression of eggs, first instar larvae, and adults of the host species after 45 days. This same range of mite densities led to reductions of wheat weight losses of 15 and 25% after 45 and 60 days after infestation respectively. Acarophenax lacunatus shows good potential as a biological control agent of R. dominica.
Resumo:
The formation of calcium silicate hydrates (C-S-H) during the hydration of tricalcium silicate (C3S) in pure water and in water solutions containing 1% CaCl2 (accelerator) and 0.01% saccharose (retarder) was studied by small-angle X-ray scattering (SAXS). SAXS measurements were performed under isothermal conditions within the temperature range 25 °C T < 52 °C. The experimental results indicate that the time variation of the mass fraction of the C-S-H product phase, α(f), can be fitted, under all conditions of paste setting, by Avrami equation, α(t) = 1 -exp(-(kt)′), k being a rate parameter and n an exponent depending on the characteristics of the transformation. The parameter n is approximately equal to 2 for hydration of C^S in pure water. Depending on temperature, n varies from 2 to 2.65 for hydration in the presence of CaC^ and saccharose. The value n = 2 is theoretically expected for lateral growth of thin C-S-H plates of constant thickness. The time dependence of SAXS intensity indicates that the transformed phase (C-S-H) consists of colloidal particles in early stages of hydration, evolving by two-dimensional growth toward a disordered lamellar structure composed of very thin plates. The activation energy ΔE for the growth of C-S-H phase was determined from the time dependence of X-ray scattering intensity. These data were obtained by in situ measurements at different temperatures of hydration. The values of ΔE are 37.7, 49.4, and 44.3 kJ/mol for hydration in pure water and in water solutions containing CaCl2 and saccharose, respectively. © 2000 American Chemical Society.
Resumo:
The parasitic mite Acarophenax lacunatus kills the eggs upon which it feeds and seems to have potential as a biological control agent of stored grain pests. The lack of biological studies on this mite species led to the present study carried out in laboratory conditions at eight different temperatures (ranging from 20 to 41°C) and 60% relative humidity using Rhyzopertha dominica as host. The higher the temperature, the faster: (1) the attachment of female mites to the host egg (varying from 1 to 5 h); (2) the increase in body size of physogastric females (about twice faster at 40°C than at 20°C); and (3) the generation time (ranging from 40 to 220 h). In addition, the higher the temperature, the shorter the maximum female longevity (ranging from about 75 to 300 h). The two estimated temperature thresholds for development of A. lacunatus on R. dominica were 18 and 40°C. The average number of female and male offspring per gravid mite were 12.8 and 1.0, respectively, with sex ratios (females/total) ranging from 0.91 to 0.94 (maximum at 30°C). The net reproductive rate and intrinsic rate of increase also presented maximum values at 30°C (12.1 and 0.04, respectively).
Resumo:
Strontium barium niobate (SBN) thin films were crystallized by conventional electric furnace annealing and by rapid-thermal annealing (RTA) at different temperatures. The average grain size of films was 70 nm and thickness around 500 nm. Using x-ray diffraction, we identified the presence of polycrystalline SBN phase for films annealed from 500 to 700 °C in both cases. Phases such as SrNb2O6 and BaNb2O6 were predominantly crystallized in films annealed at 500 °C, disappearing at higher temperatures. Dielectric and ferroelectric parameters obtained from films crystallized by conventional furnace and RTA presented essentially the same values.
Resumo:
Studies were conducted to show the effect of different temperatures in the drying process on the amount and quality of essential oils of peppermint (Mentha piperita L.) The leaves were harvested in the Demeter Farmer, Botucatu, SP, Brazil in december, 1997. The leaves were dried at 40°C, 60°C and 80°C, until establishment of the weights. The essential oil was extracted by destilation in Clevenger apparatus and analysed by GC-MS. Higher drying temperature sharply decreased the essential oil content (% v/w) from 1.0% (40°C) to 0.14% (60°C) and 0.12% (80°C). Higher drying temperatures also affected the composition, decreasing the contents of 1,8 cineol and citronelal until 80°C, and increasing the contents of menthol and neomenthol until 60°C.
Resumo:
The sun mushroom is the popular name for the Agaricus blazei Murill fungus, a mushroom native to south-eastern Brazil, which has been frequently used in popular medicine mainly in the form of tea to treat various ailments (stress, diabetes, etc.). In the present study, the genotoxic and/or anti-genotoxic effects ofA. blazei on mammalian cells in culture was assessed by checking the increase or reduction of micronucleus (MN) frequency and comets. The sun mushroom (lineage 99/26) was used as aqueous extracts prepared (2.5%) at three different temperatures (60, 25 and 4°C). The in vitro micronucleus (MN) test in binucleated cells and comet assay were used in V79 cells cultivated in HAM-F10+DMEM medium (1:1), supplemented with 10% of fetal bovine serum. The experiments were divided into four treatment types: 1. Negative control; 2. Positive control with MMS; 3. Treatments with the three forms of extracts (60, 25 and 4°C); and 4. Treatments with the extracts in different associations (simultaneous, pre-treatment, post-treatment and simultaneous after pre-incubation for 1 h) with MMS. None of the A. blazei extracts show genotoxic activity. In the comet assay no protecting effect was found. The results obtained in the MN test showed that the three forms of extracts used had protective activity, suggesting that the compound or active ingredients of A. blazei are always present in these extracts. The greater protective efficiency of the simultaneous treatment and simultaneous treatment with pre-incubation mixture with MMS suggests that the extracts have an antimutagenic action of the desmutagenic type. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In this study, the aphid Lipaphis erysimi (Kalt) was reared at different temperatures, under laboratory and field conditions, aiming to obtain age-specific life tables. In the laboratory, L. erysimi was fed on kale, Brassica oleracea L. var acephala, and kept in incubators adjusted to 10, 15, 20, 25 and 30°C, 14h photophase and 70±10% RH. The longest mean generation time (T) was observed at 15°C (23.86 days) and the shortest at 30°C (7.18 days), while the smallest net reproductive rate (R0) occurred at 15°C (4.30) and largest one at 25°C (38.29). For the temperatures of 15, 20, 25 and 30°C, the intrinsic rate of natural increase (rm) and the finite rate of increase (λ) were 0.06/1.06, 0.24/1.27, 0.28/1.33 and 0.23/1.25, respectively. The doubling time (DT) at 15, 20, 25 and 30°C were 11.55, 2.80, 2.47, and 3.01 days, respectively. Under field conditions, the net reproductive rate (R0) of L. erysimi was larger in the winter (53.50) than in the summer (40.99), the same being observed for the mean generation time (T), which was 13.85 days in the winter and 7.57 days in the summer. The intrinsic rate of natural increase (rm) and the finite rate of increase (λ) were 0.29/1.34 and 0.40/1.63 for winter and summer, respectively. The doubling time (DT) observed for winter (2.39 days) was larger than the one observed for summer (1.41 days). The temperature affects longevity of L. erysimi and the best parameters of life table of fertility under laboratory conditions are obtained at 25°C. The data obtained in field conditions reinforced this finding. The daily fecundity was higher and longevity was smaller in the summer than in the winter, thus increasing the innate capacity of increasing in number and duplicating the population in a shorter period of time.
Resumo:
Agaricus blazei Murill is a mushroom largely consumed due to its medicinal properties. Effects of aqueous extract from its lineage AB97/11 in 2 fruiting body development stages (closed and opened pileus) were evaluated on chinese hamster V79 cells using cytokinesis blocking micronucleus (CBMN) and comet assays. The cells were treated at 0.15% concentration of aqueous extract prepared at different temperatures: ice-cold (4°C), room temperature (21°C) and warm (60°C). The extracts were applied in mutagenicity and antimutagenicity protocols (simultaneous, pre-incubation and continuous). The results showed that the aqueous extracts of Agaricus blazei lineage AB97/11 obtained at the 3 temperatures and both development stages did not present mutagenic or antimutagenic effect in V79 cells either in CBMN or comet assay.
Resumo:
Responses of photosynthetic rates, determined by oxygen evolution using the light and dark bottles technique, to different temperatures, irradiances, pH, and diurnal rhythm were analyzed under laboratory conditions in four charophyte species (Chara braunii Gmelin, C. guairensis R. Bicudo, Nitella subglomerata A. Braun and Nitella sp.) from Iotic habitats in southeastern Brazil. Parameters derived from the photosynthesis versus irradiance curves indicated affinity to low irradiances for all algae tested. Some degree of photoinhibition, [β = -(0.30-0.13) mg 02 g-1 dry weight h-1 (μmol photons m-2 s-1)-1], low light compensation points (lc = 4-20 μmol photons m-2 s-1) were found for all species analyzed, as well as low values of light saturation parameter (lk) and saturation (ls) 29-130 and 92-169 μmol photons m-2 S-1, respectively. Photoacclimation was observed in two populations of N. subglomerata collected from sites with different irradiances, consisting of variations in photosynthetic parameters (higher values of α, and lower of lk and maximum photosynthetic rate, Pmax, in the population under lower irradiance). The highest photosynthetic rates for Chara species were observed at 10-15°C, while for Nitella the highest photosynthetic rate was observed at 20-25°C, despite the lack of significant differences among most levels tested. Rates of dark respiration significantly increase with temperature, with the highest values at 25°C. The results from pH experiments showed highest photosynthetic rates under pH 4.0 for all algae, suggesting higher affinity for inorganic carbon in the form of carbon dioxide, except in one population of N. subglomerata, with similar rates under the three levels, suggesting indistinct use of bicarbonate and carbon dioxide. Diurnal changes in photosynthetic rates revealed a general pattern for most algae tested, which was characterized by two peaks: the first (higher) during the morning (07.00-11.00) and the second (lower) in the afternoon (14.00-17.00). This suggests an endogenous rhythm determining the daily variations in photosynthetic rates.
Resumo:
A quantitative phase analysis was made of LixCoO2 powders obtained by two distinct chemical methodologies at different temperatures (from 400 to 700°C). A phase analysis was made using Rietveld refinements based on X-ray diffraction data, considering the Li xCoO2 powders as a multiphase system that simultaneously contained two main phases with distinct, layered and spinel-type structures. The results showed the coexistence of both structures in LixCoO 2 obtained at low temperature (400 and 500°C), although only the layered structure was detected at higher temperatures (600 and 700°C), regardless of the chemical powder process employed. The electrochemical performance, evaluated mainly by the cycling reversibility of Li xCoO2 in the form of cathode insertion electrodes, revealed that there is a close correlation between structural features and the electrochemical response, with one of the redox processes (3.3 v/3.9 v) associated only with the presence of the spinel-type structure. © 2003 Elsevier B.V. All rights reserved.