546 resultados para Dermal melanophores


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-beta1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Lower back pain treatment and compensation costs >$80 billion overall in the US. 75% of back pain is due to disc degeneration in the lumbar region of the spine. Current treatment comprises of painkillers and bed rest or as a more radical solution – interbody cage fusion. In the early stages of disc degeneration the patient would benefit from addition of an injectable gel which polymerises in situ to support the degenerated nucleus pulposus. This involves a material which is an analogue of the natural tissue capable of restoring the biomechanical properties of the natural disc. The nucleus pulposus of the intervertebral disc is an example of a natural proteoglycan consisting of a protein core with negatively charged keratin and chondroitin sulphate attached. As a result of the high fixed charge density of the proteoglycan, the matrix exerts an osmotic swelling pressure drawing sufficient water into support the spinal system. Materials and Methods: NaAMPs (sodium 2- acrylamido 2-methyl propane sulphonic acid) and KSPA (potassium 3- sulphopropyl acrylate) were selected as monomers, the sulphonate group being used to mimic the natural sulphate group. These are used in dermal applications involving chronic wounds and have acceptably low cytotoxicity. Other hydrophilic carboxyl, amide and hydroxyl monomers such as 2-hydroxyethyl acrylamide, ß-carboxyethyl acrylate, acryloyl morpholine, and polyethylene glycol (meth)acrylate were used as diluents together with polyethyleneglycol di(meth)acrylate and hydrophilic multifunctional macromers as cross-linker. Redox was the chosen method of polymerisation and a range of initiators were investigated. Components were packaged in two solutions each containing a redox pair. A dual syringe method of injection into the cavity was used, the required time for polymerisation is circa 3-7 minutes. The final materials were tested using a Bohlin CVO Rheometer cycling from 0.5-25Hz at 37oC to measure the modulus. An in-house compression testing method was developed, using dialysis tubing to mimic the cavity, the gels were swelled in solutions of various osmolarity and compressed to ~ 20%. The pre-gel has also been injected into sheep spinal segments for mechanical compression testing to demonstrate the restoration of properties upon use of the gel. Results and Discussion: Two systems resulted using similar monomer compositions but different initiation and crosslinking agents. NaAMPs and KSPA were used together at a ratio of ~1:1 in both systems with 0.25-2% crosslinking agent, diacrylate or methacrylate. The two initiation systems were ascorbic acid/oxone, and N,N,N,N - tetramethylethylenediamine (TEMED)/ potassium persulphate. These systems produced gelation within 3-7 and 3-5 minutes respectively. Storage of the two component systems was shown to be stable for approximately one month after mixing, in the dark, refrigerated at 1-4oC. The gelation was carried out at 37oC. Literature values for the natural disc give elastic constants ranging from 3-8kPa. The properties of the polymer can be tailored by altering crosslink density and monomer composition and are able to match those of the natural disc. It is possible to incorporate a radio-opaque (histodenz) to enable x-ray luminescence during and after injection. At an inclusion level of 5% the gel is clearly visible and polymerisation and mechanical properties are not altered. Conclusion: A two-pac injection system which will polymerise in situ, that can incorporate a radio-opaque, has been developed. This will reinforce the damaged nucleus pulposus in degenerative disc disease restoring adequate hydration and thus biomechanical properties. Tests on sheep spine segments are currently being carried out to demonstrate that a disc containing the gel has similar properties to an intact disc in comparison to one with a damaged nucleus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development and characterization of an enhanced composite skin substitute based on collagen and poly(e-caprolactone) are reported. Considering the features of excellent biocompatibility, easy-manipulated property and exempt from cross-linking related toxicity observed in the 1:20 biocomposites, skin substitutes were developed by seeding human single-donor keratinocytes and fibroblasts alone on both sides of the 1:20 biocomposite to allow for separation of two cell types and preserving cell signals transmission via micro-pores with a porosity of 28.8 ± 16.1 µm. The bi-layered skin substitute exhibited both differentiated epidermis and fibrous dermis in vitro. Less Keratinocyte Growth Factor production was measured in the co-cultured skin model compared to fibroblast alone condition indicating a favorable microenvironment for epidermal homeostasis. Moreover, fast wound closure, epidermal differentiation, and abundant dermal collagen deposition were observed in composite skin in vivo. In summary, the beneficial characteristics of the new skin substitutes exploited the potential for pharmaceutical screening and clinical application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparation and characterisation of collagen:PCL composites for manufacture of tissue engineered skin substitutes and models are reported. Films having collagen:PCL (w/w) ratios of 1:4, 1:8 and 1:20 were prepared by impregnation of lyophilised collagen mats by PCL solutions followed by solvent evaporation. In vitro assays of collagen release and residual collagen content revealed an expected inverse relationship between the collagen release rate and the content of synthetic polymer in the composite that may be exploited for controlled presentation and release of biopharmaceuticals such as growth factors. DSC analysis revealed the characteristic melting point of PCL at around 60°C and a tendency for the collagen component, at high loading, to impede crystallinity development within the PCL phase. The preparation of fibroblast/composite constructs was investigated using cell culture as a first stage in mimicking the dermal/epidermal structure of skin. Fibroblasts were found to attach and proliferate on all the composites investigated reaching a maximum of 2×105/cm2 on 1:20 collagen:PCL materials at day 8 with cell numbers declining thereafter. Keratinocyte growth rates were similar on all types of collagen:PCL materials investigated reaching a maximum of 6.6×104/cm2 at day 6. The results revealed that composite films of collagen and PCL are favourable substrates for growth of fibroblasts and keratinocytes and may find utility for skin repair. © 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue engineering of skin based on collagen:PCL biocomposites using a designed co-culture system is reported. The collagen:PCL biocomposites having collagen:PCL (w/w) ratios of 1:4, 1:8, and 1:20 have been proven to be biocompatible materials to support both adult normal human epidermal Keratinocyte (NHEK) and mouse 3T3 fibroblast growth in cell culture, respectively, by Dai, Coombes, et al. in 2004. Films of collagen:PCL biocomposites were prepared using non-crosslinking method by impregnation of lyophilized collagen mats with PCL/dichloromethane solutions followed by solvent evaporation. To mimic the dermal/epidermal structure of skin, the 1:20 collagen:PCL biocomposites were selected for a feasibility study of a designed co-culture technique that would subsequently be used for preparing fibroblast/biocomposite/keratinocyte skin models. A 55.3% increase in cell number was measured in the designed co-culture system when fibroblasts were seeded on both sides of a biocomposite film compared with cell culture on one surface of the biocomposite in the feasibility study. The co-culture of human keratinocytes and 3T3 fibroblasts on each side of the membrane was therefore studied using the same co-culture system by growing keratinocytes on the top surface of membrane for 3 days and 3T3 fibroblasts underneath the membrane for 6 days. Scanning electron microscopy (SEM) and immunohistochemistry assay revealed good cell attachment and proliferation of both human keratinocytes and 3T3 fibroblasts with these two types of cells isolated well on each side of the membrane. Using a modified co-culture technique, a co-cultured skin model presenting a confluent epidermal sheet on one side of the biocomposite film and fibroblasts populated on the other side of the film was developed successfully in co-culture system for 28 days under investigations by SEM and immunohistochemistry assay. Thus, the design of a co-culture system based on 1:20 (w/w) collagen:PCL biocomposite membranes for preparation of a bi-layered skin model with differentiated epidermal sheet was proven in principle. The approach to skin modeling reported here may find application in tissue engineering and screening of new pharmaceuticals. © 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate the adhesive properties of an in-house amino-propyltrimethoxysilane-methylenebisacrylamide (APTMS-MBA) siloxane system and compare them with a commercially available adhesive, n-butyl cyanoacrylate (nBCA). The ability of the material to perform as a soft tissue adhesive was established by measuring the physical (bond strength, curing time) and biological (cytotoxicity) properties of the adhesives on cartilage. Complementary physical techniques, X-ray photoelectron spectroscopy, Raman and infrared imaging, enabled the mode of action of the adhesive to the cartilage surface to be determined. Adhesion strength to cartilage was measured using a simple butt joint test after storage in phosphate-buffered saline solution at 37°C for periods up to 1 month. The adhesives were also characterised using two in vitro biological techniques. A live/dead stain assay enabled a measure of the viability of chondrocytes attached to the two adhesives to be made. A water-soluble tetrazolium assay was carried out using two different cell types, human dermal fibroblasts and ovine meniscal chondrocytes, in order to measure material cytotoxicity as a function of both supernatant concentration and time. IR imaging of the surface of cartilage treated with APTMS-MBA siloxane adhesive indicated that the adhesive penetrated the tissue surface marginally compared to nBCA which showed a greater depth of penetration. The curing time and adhesion strength values for APTMS-MBA siloxane and nBCA adhesives were measured to be 60 s/0.23 MPa and 38 min/0.62 MPa, respectively. These materials were found to be significantly stronger than either commercially available fibrin (0.02 MPa) or gelatin resorcinol formaldehyde (GRF) adhesives (0.1 MPa) (P <0.01). Cell culture experiments revealed that APTMS-MBA siloxane adhesive induced 2% cell death compared to 95% for the nBCA adhesive, which extended to a depth of approximately 100-150 μm into the cartilage surface. The WST-1 assay demonstrated that APTMS-MBA siloxane was significantly less cytotoxic than nBCA adhesive as an undiluted conditioned supernatant (P <0.001). These results suggest that the APTMS-MBA siloxane may be a useful adhesive for medical applications. © VSP 2005.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The natural selection of anticoagulant resistant rats has resulted in a need for an alternative to anticoagulant rodenticides which differs in both active ingredient and in the method of dosing. Cholecalciferol toxicity to rodents using the dermal route is demonstrated using a variety of penetration enhancing formulations in two in-vitro models and finally in-vivo. A 1 ml dose of 50/50 (v/v) DMSO/ethanol containing 15% (v/v) PEG 200 and 20% (w/v) cholecalciferol was judged as 'sufficiently effective' in line with the European Union's Biocidal Products Regulation (No. 528/2012) during in-vivo studies. This dose was found to cause 100% mortality in a rat population in 64.4 h (±22 h).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A tilted fiber Bragg grating (TFBG) was integrated as the dispersive element in a high performance biomedical imaging system. The spectrum emitted by the 23 mm long active region of the fiber is projected through custom designed optics consisting of a cylindrical lens for vertical beam collimation and successively by an achromatic doublet onto a linear detector array. High resolution tomograms of biomedical samples were successfully acquired by the frequency domain OCT-system. Tomograms of ophthalmic and dermal samples obtained by the frequency domain OCT-system were obtained achieving 2.84 μm axial and 10.2 μm lateral resolution. The miniaturization reduces costs and has the potential to further extend the field of application for OCT-systems in biology, medicine and technology. © 2014 SPIE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is concerned with the nature of biomaterial interactions with compromised host tissue sites. Both ocular and dermal tissues can be wounded, following injury, disease or surgery, and consequently require the use of a biomaterial. Clear analogies exist between the cornea/tear film/contact lens and the dermal wound bed/wound fluid/skin adhesive wound dressing. The work described in this thesis builds upon established biochemistry to examine specific aspects of the interaction of biomaterials with compromised ocular and dermal tissue sites, with a particular focus on the role of vitronectin. Vitronectin is a prominent cell adhesion glycoprotein present in both tear fluid and wound fluid, and has a role in the regulation and upregulation of plasmin. The interaction of contact lenses with the cornea was assessed by a novel on-lens cell-based vitronectin assay technique. Vitronectin mapping showed that vitronectin-mediated cell adhesion to contact lens surfaces was due to the contact lens-corneal mechanical interaction rather than deposition out of the tear film. This deposition is associated predominantly with the peripheral region of the posterior contact lens surface. The locus of vitronectin deposition on the contact lens surface, which is affected by material modulus, is potentially an important factor in the generation of plasmin in the posterior tear film. Use of the vitronectin mapping technique on ex vivo bandage contact lenses revealed greater vitronectin-mediated cell adhesion to the contact lens surfaces in comparison to lenses worn in the healthy eye. The results suggest that vitronectin is more readily deposited from the impaired corneal tissue bed than the intact healthy tissue bed. Significantly, subjects with a deficient tear film were found to deposit high vitronectin-mediated cell adhesion levels to the BCL surface, thus highlighting the influence of the contact lens-tissue interaction upon deposition. Biomimetic principles imply that adhesive materials for wound applications, including hydrogels and hydrocolloids, should closely match the surface energy parameters of skin. The surface properties of hydrocolloid adhesives were found to be easily modified by contact with siliconised plastic release liners. In contrast, paper release liners did not significantly affect the adhesive surface properties. In order to characterise such materials in the actual wound environment, which is an extremely challenging task, preliminary considerations for the design of an artificial wound fluid model from an animal serum base were addressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A compact, fiber-based spectrometer for biomedical application utilizing a tilted fiber Bragg grating (TFBG) as integrated dispersive element is demonstrated. Based on a 45° UV-written PS750 TFBG a refractive spectrometer with 2.06 radiant/μm dispersion and a numerical aperture of 0.1 was set up and tested as integrated detector for an optical coherence tomography (OCT) system. Featuring a 23 mm long active region at the fiber the spectrum is projected via a cylindrical lens for vertical beam collimation and focused by an achromatic doublet onto the detector array. Covering 740 nm to 860 nm the spectrometer was optically connected to a broadband white light interferometer and a wide field scan head and electronically to an acquisition and control computer. Tomograms of ophthalmic and dermal samples obtained by the frequency domain OCT-system were obtained achieving 2.84 μm axial and 7.6 μm lateral resolution. © 2014 SPIE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extracellular signal-regulated kinase 5 (ERK5) is activated in response to environmental stress and growth factors. Gene ablation of Erk5 in mice is embryonically lethal as a result of disruption of cardiovascular development and vascular integrity. We investigated vascular endothelial growth factor (VEGF)-mediated ERK5 activation in primary human dermal microvascular endothelial cells (HDMECs) undergoing proliferation on a gelatin matrix, and tubular morphogenesis within a collagen gel matrix. VEGF induced sustained ERK5 activation on both matrices. However, manipulation of ERK5 activity by siRNA-mediated gene silencing disrupted tubular morphogenesis without impacting proliferation. Overexpression of constitutively active MEK5 and ERK5 stimulated tubular morphogenesis in the absence of VEGF. Analysis of intracellular signalling revealed that ERK5 regulated AKT phosphorylation. On a collagen gel, ERK5 regulated VEGF-mediated phosphorylation of the pro-apoptotic protein BAD and increased expression of the anti-apoptotic protein BCL2, resulting in decreased caspase-3 activity and apoptosis suppression. Our findings suggest that ERK5 is required for AKT phosphorylation and cell survival and is crucial for endothelial cell differentiation in response to VEGF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the anatomy of expanding, mature, and senescing leaves of tropical plants for the presence of red pigments: anthocyanins and betacyanins. We studied 463 species in total, 370 genera, belonging to 94 families. This included 21 species from five families in the Caryophyllales, where betacyanins are the basis for red color. We also included 14 species of ferns and gymnosperms in seven families and 29 species with undersurface coloration at maturity. We analyzed 399 angiosperm species (74 families) for factors (especially developmental and evolutionary) influencing anthocyanin production during expansion and senescence. During expansion, 44.9% produced anthocyanins and only 13.5% during senescence. At both stages, relatively few patterns of tissue distributions developed, primarily in the mesophyll, and very few taxa produced anthocyanins in dermal and ground tissue simultaneously. Of the 35 species producing anthocyanins both in development and senescence, most had similar cellular distributions. Anthocyanin distributions were identical in different developing leaves of three heteroblastic taxa. Phylogeny has influenced the distribution of anthocyanins in the epidermis and mesophyll of expanding leaves and the palisade parenchyma during senescence, although these influences are not strong. Betacyanins appear to have similar distributions in leaves of taxa within the Caryophyllales and, perhaps, similar functions. The presence of anthocyanins in the mesophyll of so many species is inconsistent with the hypothesis of protection against UV damage or fungal pathogens, and the differing tissue distributions indicate that the pigments may function in different ways, as in photoprotection and freeradical scavenging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Red pigments, products of different metabolic pathways, occur in terrestrial plants. The flavonoid pathway contributes the greatest diversity, culminating in the prevalence of anthocyanins in the angiosperms. Anthocyanins are produced in flowers and fruits, and also in vegetative organs, but have been poorly researched in the latter. Anthocyanins are commonly produced in: 1. rapidly expanding leaves of tropical plants; 2. senescing leaves of temperate plants; 3. undersurfaces of floating leaves of aquatic plants; 4. abaxial surfaces of leaves of understory plants; and 5. leaves subjected to various environmental stresses. The distribution of anthocyanins in leaves, both in presence and in tissue distribution, is influenced by both phylogeny and development. Few species produce anthocyanins in leaf tissues derived from both dermal and ground embryonic tissue. These influences will be important in resolving the ecological roles of anthocyanins in leaves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endothelin 3 (Edn3) is a ligand important to developing neural crest cells (NCC). Some NCC eventually migrate into the skin and give rise to the pigment-forming melanocytes found in hair follicles. Edn3's effects on NCC have been largely explored through spontaneous mutants and cell culture experiments. These studies have shown the Endothelin receptor B/Edn3 signaling pathway to be important in the proliferation/survival and differentiation of developing melanocytes. To supplement these investigations I have created doxycycline-responsive transgenic mice which conditionally over-express Edn3. These mice will help us clarify Edn3's role during the development of early embryonic melanoblasts, differentiating melanocyte precursors in the skin, and fully differentiated melanocytes in the hair follicle. The transgene mediated expression of Edn3 was predominantly confined to the roof plate of the neural tube and surface ectoderm in embryos and postnatally in the epidermal keratinocytes of the skin. Relative to littermate controls, transgenics develop increased pigmentation on most areas of the skin. My doxycycline-based temporal studies have shown that both embryonic and postnatal events are important for establishing and maintaining pigmented skin. The study of my Edn3 transgenic mice may offer some insight into the genetics behind benign dermal pigmentation and offer clues about the time periods important in establishing these conditions. This apparently abnormal development is echoed in a benign condition of human skin. Cases of dermal melanocytosis, such as common freckles, Mongolian spotting, and nevus of Ito demonstrate histological and etiological characteristics similar to those of the transgenic mice generated in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endothelin-3 (Edn3) has been shown to be an essential environmental cue in melanocyte development. Edn3 and its receptor, EdnrB, are allelic to mouse mutations occurring at the lethal spotting and piebald loci, respectively; these mutations result in hypopigmentation phenotypes. Mutations in the genes for both Edn3 and EdnrB are implicated in human pigmentation disorders such as Waardenburg-Shah syndrome, which is characterized by pigmentation defects, deafness, and megacolon. In this study, a tetracycline-inducible transgenic mouse model that overexpresses Edn3 under the control of the Keratin 5 promoter was shown to produce a hyperpigmentation phenotype that decreases over time. The expression pattern of transgenic Edn3 and its effects on the melanocyte population were examined in transgenic embryos, postnatal skin, and the skin of adult mice that exhibit faded hyperpigmentation. These studies suggest that overexpression of Edn3 in this model is restricted primarily to the roof plate of the neural tube and surface ectoderm in the developing embryo and to keratinocytes in the epidermis of postnatal mice. A decline in transgenic expression and a reduction in the dermal melanocytes and free melanin that characterize the phenotype in juvenile mice were shown to correlate with the fading of the hyperpigmentation phenotype. Transgenic mice in which transgenic expression was repressed (resulting in the disappearance of the hyperpigmentation phenotype) also exhibited a decrease in the dermal melanocyte population. The Edn3-overexpressing mice used in this study might be helpful m understanding human skin conditions characterized by dermal melanocytosis.